
Part III Commutative Algebra

Example Sheet II, 2021

Note: If you would like to receive feedback, please turn in solutions to Questions 4, 7, and 9 by noon on November
12th, at which time solutions will be posted. You turn your work in via the moodle course page.

1. Geometric interpretation of primary decomposition. Let X be a topological space. A non-empty subset Z ⊆ X
is irreducible if whenever Z = Z1 ∪ Z2 with Z1, Z2 closed subsets of Z, we have either Z = Z1 or Z = Z2.

A topological space is Noetherian if it satisfies the descending chain condition for closed subsets.

Show that if Z ⊆ X is a closed subset with X a Noetherian topological space, then there is a decomposition

Z = Z1 ∪ · · · ∪ Zr

with the Zi irreducible closed subsets. Show this decomposition is unique (up to reordering) if it is irredundant,
i.e., we don’t have Zi ⊆ Zj for any j.

Now let A be a ring, I ⊆ A an ideal. Show that I prime implies that V (I) is irreducible.

Show that if A is Noetherian, then SpecA is a Noetherian topological space. Show that if A is Noetherian,
Z = V (I) and Z = Z1 ∪ · · · ∪ Zr is an irredundant irreducible decomposition, then there is a one-to-one
correspondence between the set {Zi} and the minimal associated primes of A/I.

2. Let I = (x2, xy, xz, yz) ⊆ k[x, y, z]. Find the associated primes of k[x, y, z]/I and a primary decomposition for
I.

3. Show the following statements about the support of an A-module:

(a) If 0→M1 →M2 →M3 → 0 is exact, then Supp(M2) = Supp(M1) ∪ Supp(M3).

(b) If M =
∑

i Mi for submodules Mi ⊆M , then Supp(M) =
⋃

Supp(Mi).

(c) For p ⊂ A a prime ideal, write k(p) := Ap/pAp. If M is finitely generated, show that p ∈ Supp(M) if and
only if M ⊗A k(p) 6= 0.

(d) If M,N are finitely generated A-modules, then Supp(M ⊗A N) = Supp(M) ∩ Supp(N).

(e) If f : A → B is a ring homomorphism and M is a finitely generated A-module, then Supp(B ⊗A M) =
(f∗)−1(Supp(M)).

[Note: You may find useful the identity on tensor products (M ⊗A B)⊗B C ∼= M ⊗A C given an A-module M ,
an A-algebra B and a B-algebra C.]

4. Let A be a ring and let A[x] be the polynomial ring. If I ⊆ A is an ideal, denote by I[x] the set of all polynomials
in A[x] with coefficients in I.

(a) Show I[x] is the extension Ie of I to A[x].

(b) If p is a prime ideal of A, show that p[x] is a prime ideal of A[x].

(c) If q is a p-primary ideal of A, then q[x] is a p[x]-primary ideal in A[x].

(d) If I =
⋂n

i=1 qi is an irredundant primary decomposition of I in A, then I[x] =
⋂n

i=1 qi[x] is an irredundant
primary decomposition in A[x].

(e) If p is a minimal prime of V (I), then p[x] is a minimal prime of V (I[x]).

5. In a ring A, let D(A) denote the set of prime ideals p which satisfy the following condition: there exists an a ∈ A
such that p is minimal in V (Ann(a)).

(a) Show that x is a zero divisor in A if and only if x ∈ p for some p ∈ D(A).

(b) Let S be a multiplicatively closed subset of A. Under the canonical identification of SpecS−1A with a
subset of SpecA, show that

D(S−1A) = D(A) ∩ SpecS−1A.

(c) If the 0 ideal has a primary decomposition, show that D(A) is the set of associated primes of A. [Note:
While results in lecture were always proved for Noetherian rings, the argument that if N ⊆M has a primary
decomposition, then the associated primes of M/N are precisely the primes appearing in an irredundant
primary decomposition of N is easily checked to apply without any hypotheses.]



[Note: We are not assuming A is Noetherian; otherwise problem this would follow essentially immediately from
results in lecture.]

6. For p ⊂ A a prime ideal, denote by Sp(0) the kernel of the canonical homomorphism A→ Ap. Prove:

(a) Sp(0) ⊆ p.

(b) If p ⊇ p′ then Sp(0) ⊆ Sp′(0).

(c)
√
Sp(0) = p if and only if p is a minimal prime ideal of A.

(d)
⋂

p∈D(A) Sp(0) = 0, where D(A) is the set defined in the previous exercise..

[Note if there are embedded primes, this doesn’t give a primary decomposition, and at any rate, D(A) may not
be finite.]

7. Let A be a ring such that (1) for every maximal ideal m of A, the local ring Am is Noetherian; (2) for each
non-zero x ∈ A, the set of maximal ideals of A which contain x is finite.

Show that A is Noetherian.

[Hint: You may use the theorem that a ring A is Noetherian if and only if every ideal of A is finitely generated.
Start with an ideal I, and try to find a finite set of generators by localizing at various maximal ideals.]

8. Let k be a field and let A = k[x1, x2, x3, . . .] be the polynomial ring in countably many variables. Let m1,m2 . . .
be an increasing sequence of positive integers such that mi+1 − mi > mi − mi−1 for all i > 1. Let pi =
(xmi+1, . . . , xmi+1

) and let S be the complement of
⋃∞

i=1 pi.

(a) Show that S is multiplicatively closed.

(b) Show that the maximal ideals of S−1A are the localizations S−1pi. [Hint: This would be easy if S was a
union of only a finite number of primes. First understand that case and then see how the argument can be
generalized. You need to use the specific form of the ideals pi and the fact we are dealing with polynomials,
not elements of an arbitrary ring! I think this is hard.]

(c) Using Q7, show that S−1A is Noetherian.

(d) Show that the height of S−1pi is mi+1 −mi, and hence dimS−1A =∞.

This is a famous example of Nagata.

9. Let A be a ring (not necessarily Noetherian). Show that

1 + dimA ≤ dimA[x] ≤ 1 + 2 dimA.

[Hint: consider the obvious inclusion f : A → A[x] and the induced map f∗ : SpecA[x] → SpecA. For
p ∈ SpecA, make use of Example Sheet I, Q12 (d) to identify (f∗)−1(p) with Spec k(p)[x] and use the fact that
dim k[x] = 1 when k is a field.]

[Remark: In fact, for any n and n ≤ m ≤ 1 + 2m, one can find a (necessarily non-Noetherian) domain A with
dimA = n and dimA[x] = m.]


