
III Commutative Algebra Michaelmas Term 2020

EXAMPLE SHEET 4

All rings R are commutative with a 1 6= 0.

1. (i) Let M be an R-module and I and ideal of R. Suppose that MP = 0 for all maximal

ideals P containing I. Show that M = IM .

(ii) Now assume R is noetherian and M is f.g. as an R-module. Using Krull’s theorem

and (i), show that
∞⋂

n=1

InM =
⋂
P

ker(M →MP )

where P runs over all maximal ideals containing I.

(iii) Deduce that M̂ = 0 iff Supp(M) ∩ V (I) = ∅ (in Spec(R)).

[Recall that the support of M is defined to be the set Supp(M) of prime ideals P of

R such that MP 6= 0. Properties are explored on Sheet 2 Q17.]

2. Let R be noetherian, I an ideal of R and R̂ the I-adic completion. For any r ∈ R, let

r̂ be its image in R̂. Show that r is not a zero-divisor in R iff r̂ is not a zero-divisor in R̂.

Does this imply that if R is an I.D. then R̂ is an I.D.?

3. Let R be a noetherian local ring, P its maximal ideal and k its residue field. Let M be

a f.g. R-module. Show that TFAE:

(i) M is free;

(ii) M is flat;

(iii) the mapping of P ⊗M into R⊗M is injective;

(iv) Tork1(k,M) = 0.

4. If M is an R-module, show that TFAE

(i) M is flat

(ii) TorRi (M,N) = 0 for all i > 0 and all R-modules N .

(iii) TorR1 (M,N) = 0 for all R-modules N .
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5. Let 0→ N ′ → N → N ′′ → 0 be an exact sequence, with N ′′ flat. Show that N ′ is flat

iff N is flat.

6. Let N be an R-module. Show that N is flat iff Tor1(R/I,N) = 0 for all finitely-

generated ideals I of R.

7. Let R,S be rings (not necessarily noetherian), S a multiplicatively closed subset of R,

and ϕ : R→ S−1R the canonical homomorphism.

(i) Show that the induced map ϕ∗ : Spec(S−1R)→ X =Spec(R) is a homeomorphism

of Spec(S−1R) onto its image in X. Denote this image by S−1X.

(ii) Let f : R → R′ be a ring homomorphism. Let Y =Spec(R′). Let f∗ : Y → X be

the mapping associated to f . Identifying Spec(S−1R) with its canonical image S−1X in

X, and Spec(S−1R′) (= Spec(f(S)−1R′)) with its canonical image S−1Y in Y , show that

S−1f∗ :Spec(S−1R′) →Spec(S−1R) is the restriction of f∗ to S−1Y , and that S−1Y =

f∗−1(S−1X).

(iii) Let I be an ideal of R and let J be its extension in R′ (meaning it’s the ideal

R′f(I) generated by f(I) in R′). Let g : R/I → R′/J be the homomorphism induced by

f . Identifying Spec(R/I) with its canonical image V (I) in X, and Spec(R′/J) with its

image V (J) in Y , show that g∗ is the restriction of f∗ to V (J).

(iv) Let P be a prime ideal of R. Take S = R \ P in (ii) and then reduce mod S−1P

as in (iii). Deduce that the subspace f∗−1(P ) of Y is naturally homeomorphic to Spec

(R′P /PR′P ) = Spec(k(P )⊗R R′), where k(P ) is the residue field of the local ring RP .

[Spec(k(P )⊗R R′) is called the fiber of f∗ over P .]

(v) Deduce from (iv) that

1 + dimR ≤ dimR[X] ≤ 1 + 2 dimR.

[Hint: you may need the easy fact that if P is a prime ideal of R, then P [X], the set of all

polynomials in R[X] with coefficients in P , is a prime ideal in R[X]. ]

2



8. Let R be a noetherian ring. Show that

dimR[X] = 1 + dimR,

and hence, by induction on n, that

dimR[X1, . . . , Xn] = n + dimR.

9. (i) If 0→ K → P →M → 0 and 0→ K ′ → P ′ →M → 0 are short exact sequences of

R-modules and P, P ′ are projective, then show K ⊕ P ′ is isomorphic to K ′ ⊕ P . This is

called Schanuel’s lemma after Stephen Schanuel who proved it during a class given by Irv

Kaplansky.

(ii) Prove a mild extension extension for the R-module M . Namely, given two exact

sequences

0→ K → Pn → Pn−1 → · · · → P1 →M → 0

0→ L→ Qn → Qn−1 → · · · → Q1 →M → 0,

where the P s and Qs are projective. Then

K ⊕Qn ⊕ Pn−1 ⊕ · · · ∼= L⊕ Pn ⊕Qn−1 ⊕ · · ·

where, if n is odd, the direct sums terminate in Q1 and P1, respectively; if n is even, they

terminate in P1 and Q1.

10. Assume R is noetherian and I an ideal. Show that I is contained in the Jacobson

radical of R iff every maximal ideal of R is closed for the I-adic topology. [A noetherian

topological ring in which the topology is defined by an ideal containing in J(R) is called a

Zariski ring. Examples are local rings and by Q.13(iv) below, I-adic completions.]

11. Show that the additive group of an R-module M is a topological abelian group with

respect to the I-adic topology. (You have to show that the maps M ×M →M (x, y) 7→

x + y and M →M m 7→ −m are continuous.)
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12. (i) Let A be an integral domain. An A-module D is said to be divisible if for every

d ∈ D and every non-zero r ∈ A there exists c ∈ D such that rc = d. Note that we do

not require the uniqueness of c. Assuming that R is a principal ideal domain show that

an A-module is injective iff it is divisible.

(ii) Find an example of a ring and module for this ring which is divisible but not

injective.

13. Let R be noetherian, R̂ its I-adic completion. Show that

(i) Î = R̂I ∼= R̂⊗R I;

(ii) (̂In) = (Î)n;

(iii) In/In+1 ∼= În/În+1;

(iv) the ideal Î is contained in the Jacobson radical of R̂.

Deduce that if (noetherian) R is a local ring with maximal ideal P , then the I-adic

completion R̂ of R is a local ring with maximal ideal P̂ .

14. Let R be a local ring, P its maximal ideal. Assume that R is P -adically complete. For

any polynomial p(X) ∈ R[X], let p̄(X) ∈ (R/P )[X] denote its reduction mod P . Suppose

that p(X) is monic of degree n; suppose also that there exist coprime monic polynomials

q̄(X), r̄(X) ∈ (R/P )[X] of degrees d, n− d with p̄(X) = q̄(X)r̄(X). Show that we can lift

q̄(X), r̄(X) back to monic polynomials q(X), r(X) ∈ R[X] such that p(X) = q(X)r(X).

This is known as Hensel’s lemma.

15. Let R be a (not necessarily commutative) ring. Show that every left R-module is

isomorphic to a submodule of an injective module. [Hint: Prove this result first in the

case of abelian groups, i.e. for R = Z. Then if S is any ring and M is injective as Z-

module, show that HomZ(S,M) is an injective S-module. Then deduce any S-module can

be embedded in an injective S-module. ]
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