
III Commutative Algebra Michaelmas Term 2020

EXAMPLE SHEET 2

All rings R are commutative with a 1.

1. Let S be a multiplicatively closed subset of a ring R, and let M be a finitely-generated

R-module. Prove that S−1M = 0 if and only if there exists s ∈ S such that sM = 0.

2. Let I be an ideal of R, and let S = 1 + I. Show that S−1I is contained in the Jacobson

radical of S−1R.

3. A multiplicatively closed subset S of R is saturated when xy ∈ S iff both x and y are

in S. Prove that

(i) S is saturated iff R \ S is a union of prime ideals.

(ii) If S is any multiplicatively closed subset of R, there is a unique smallest saturated

multiplicatively closed subset S′ containing S, and that S′ is the complement in R of the

union of the prime ideals which do not meet S. [We call S′ the saturation of S. ]

If S = 1 + I for some ideal I, find S′.

4. Let S, T be two multiplicatively closed subsets of R, and let U be the image of T in

S−1R. Show that the rings (ST )−1R and U−1)S−1R) are isomorphic.

5. Let R be a ring. Suppose that for each prime ideal P the local ring RP has no non-zero

nilpotent element. Show that R has no non-zero nilpotent element. If each RP is an

integral domain, is R necessarily an integral domain?

6. Let S, T be multiplicatively closed subsets of R, such that S is contained in T . Let

φ : S−1R→ T−1R be the homomorphism which maps each a/s ∈ S−1R ro a/s considered

as an element of T−1R. Show that the following statements are equivalent:

(i) φ is bijective.

(ii) For each t ∈ T , t/1 is a unit in S−1R.

(iii) For each t ∈ T there exists x ∈ R such that xt ∈ S.

(iv) T is contained in the saturation of S (see Q.3).
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(v) Every prime ideal which meets T also meets S.

7. Suppose R 6= 0 and let Σ be the set of all multiplicatively closed subsets S of R such

that 0 does not belong to S. Show that Σ has maximal elements, and that S ∈ Σ is

maximal iff R \ S is a minimal prime ideal of R.

The set S0 of all non-zero-divisors in R is a saturated multiplicatively closed subset

of R. Hence the set D of zero-divisors in R is a union of prime ideals.. Show that every

minimal prime ideal of R is contained in D.

The ring S−10 R is called the total ring of fractions of R. Prove that

(i) S0 is the largest multiplicatively closed subset of R for which the homomorphism

R→ S−10 R is injective.

(ii) Every element in S−10 R is either a zero-divisor or a unit.

(iii) Every ring in which every non-unit is a zero-divisor is equal to its total ring of

fractions (i.e. R→ S−10 R is bijective.)

8. Show that (Z/mZ)⊗Z (Z/nZ) = 0 if m,n are coprime.

9. Let M be a finitely-generated R-module and let F be the (free) module Rn. Suppose

ϕ : M → F is a surjective homomorphism. Show that ker ϕ is finitely-generated. Show

that every set of generators of F is a basis of F . Deduce that every set of n generators of

F is a basis of F . Deduce that every set of generators of F has at least n elements.

10. An R-module N is called flat if N ⊗− retains exactness for all short exact sequences.

If M,N are flat R-modules , show that M ⊗R N is also flat. If A is a flat R-algebra and

N is a flat A-module, show that N is flat as an R-module.

11. Let Mi (i ∈ I) be a family of R-modules, and let M be their direct sum. Show

that M is flat iff each Mi is flat. Deduce that, if R[X] is the ring of polynomials in one

indeterminate over the ring R, then R[X] is a flat R-algebra.

12. Let M be an R-module. Show that the S−1R-modules S−1M and S−1R ⊗R M are

isomorphic; more precisely there exists a unique isomorphism f : S−1R ⊗M → S−1M

such that f((r/s)⊗m) = rm/s for all r ∈ R,m ∈M, s ∈ S. We have already seen in (2.3)
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that S−1− is exact: deduce that S−1R is a flat R-module.

13. Let A be a local ring, and M,N f.g. R-modules. Prove that if M ⊗ N = 0, then

M = 0 or N = 0. [Hint: if P is the maximal and k = R/P the residue field, show

k ⊗R M ∼= M/PM . Then apply Nakayama’s lemma.]

14. Let A be an integral domain and M an A-module. Call an element x ∈ M a torsion

element of M if its annihilator is non-zero (i.e. if x is killed by some non-zero element of A.).

Show that the torsion elements of M form a submodule of M (called the torsion submodule

of M). Denote this by T (M). If T (M) = 0, the module is said to be torsion-free. Show

that

(i) If M is any A-module, then M/T (M) is torsion-free.

(ii) If f : M → N is a module homomorphism, then f(T (M)) ⊆ T (N).

(iii) If 0 → M ′ → M → M ′′ is an exact sequence, then the sequence 0 → T (M ′) →

T (M)→ T (M ′′) is exact.

15. Let S be a multiplicatively closed subset of an I.D. A . Show that T (S−1M) =

S−1(T (M)). Deduce that TFAE:

(a) M is torsion-free.

(b) MP is torsion free for all prime ideals P .

(c) MP is torsion-free for all maximal ideals P .

16. (a) Let S be a multiplicatively closed subset of R and f : R → S−1R the natural

homomorphism (r 7→ r/1). Let C be the set of contracted ideals in R and E the set of

extended ideals in S−1R (notation and basic properties are in [AM, 1.17, 1.18]). If I is an

ideal of R, then the extension Ie in S−1R is S−1I. If J is another ideal of R, define their

ideal quotient (I : J) to be {r ∈ R : rJ ⊆ I}. (Hence (0 : J) is just the annihilator of J .)

(i) Show that every ideal in S−1R is an extended ideal.

(ii) Show that Iec =
⋃

(I : (s)) (as s ∈ S), hence that Ie = (1) iff I meets S.

(iii) Show I ∈ C iff no element of S is a zero-divisor in R/I.

(iv) Deduce the prime ideals of S−1R are in 1-1 correspondence with the prime ideals
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of R which don’t meet S.

(v) Show that the operation S−1 commutes with the formation of finite sums, prod-

ucts, intersections and taking radicals.

(b) Let S be a multiplicatively closed subset of R and let Q be a P -primary ideal.

Show that

(i) If S ∩ P 6= ∅ then S−1Q = S−1R;

(ii) If S ∩ P = ∅ then S−1Q is S−1P -primary and its contraction in R is Q. Hence

primary ideals correspond to primary ideals in the correspondence of (a)(iv) between ideals

in S−1R and contracted ideals in R.

17. The support of the R-module M is defined to be the set {P ∈ Spec(R) : MP 6= 0}.

Prove the following results:

(i) M 6= 0 iff Supp(M) 6= ∅.

(ii) V (I) = Supp(R/I).

(iii) If 0 → M ′ → M → M ′′ → 0 is an exact sequence, then Supp(M) = Supp(M ′)∪

Supp(M ′′).

(iv) If M =
∑
Mi then Supp(M) =

⋃
Supp (Mi).

(v) If M is f.g. then Supp(M) = V (Ann(M)), hence is a closed subset of Spec(R). If

I is an ideal, then Supp(M/IM) = V (I+Ann(M)).

(vi) If M,N is f.g. then Supp (M ⊗R N) = Supp(M)∩ Supp (N).

(vii) If f : R → S is a ring homomorphism and M is f.g. then Supp(S ⊗R M) =

f∗−1(Supp(M)).
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