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1. Let L be a distributive lattice (i.e. a partially ordered set with finite joins and meets — including
the empty join 0 and the empty meet 1 — satisfying the distributive law

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

for all a, b, c ∈ L). Show that there is a categoryMatL whose objects are the natural numbers, and
whose morphisms n → p are p × n matrices with entries from L, where we define ‘multiplication’
of such matrices by analogy with that of matrices over a field, interpreting ∧ as multiplication and
∨ as addition. Show also that if L is the two-element lattice {0, 1}, then MatL is equivalent to
the category Relf of finite sets and relations between them.

2. (i) Show that the assertion ‘Every small category has a skeleton’ implies the axiom of choice.
[Given a family (Ai | i ∈ I) of nonempty sets, consider a suitable category whose objects are pairs
(i, a) with a ∈ Ai.]
(ii) Show that the assertion ‘If C0 is a skeleton of a small category C, then C ≃ C0’ implies the
assertion that, given a family (Ai | i ∈ I) of nonempty sets, we can find a family (A′

i | i ∈ I) where
each A′

i is a nonempty finite subset of Ai. [In standard ZF set theory, this is equivalent to the full
axiom of choice. Take a category whose objects are the members of I×{0, 1}, with the morphisms
(i, j) → (i, k) being formal finite sums

∑t
s=1

nsas where all the as are in Ai and the ns are integers

with
∑t

s=1
ns = k − j.]

3. By an automorphism of a category C, we of course mean a functor F : C → C with a (2-sided)
inverse. We say an automorphism F is inner if it is naturally isomorphic to the identity functor.
[To see the justification for this name, think about the case when C is a group.]
(i) Show that the inner automorphisms of C form a normal subgroup of the group of all automor-
phisms of C. [Don’t worry about whether these groups are sets or proper classes!]
(ii) If 1 is a terminal object of C (i.e. an object such that for any A there is a unique morphism
A → 1), show that F (1) is also a terminal object (and hence isomorphic to 1) for any automorphism
F of C. Deduce that, for any automorphism F of Set, there is a unique natural isomorphism from
the identity to F . [Hint : Yoneda!]
(iii) Let C be a full subcategory of Top containing the singleton space 1 and the Sierpiński space
S, i.e. the two-point space {0, 1} in which {1} is open but {0} is not. Show that S is, up to
isomorphism, the unique object of C which has precisely three endomorphisms, and deduce that
FS ∼= S for any automorphism F of C. Show also that there is a unique natural isomorphism
α : U → UF , where U : C → Set is the forgetful functor. By considering naturality squares of the
form

UX
αX

> UFX

∨

Uf

∨

UFf

US
αS

> UFS
where f is continuous, deduce that, if C also contains a space in which not every union of closed
sets is closed, then αS is continuous. Hence show that F is (uniquely) naturally isomorphic to the
identity functor.
(iv) If C is the category of finite topological spaces, show that the group of inner automorphisms
of C has index 2 in the group of all automorphisms.

4. (i) A monomorphism f : A → B in a category is said to be strong if, for every commutative
square

C
h

> A
∨

↓↓

g

∨

f

D
k

> B



with g epic, there exists a (necessarily unique) t : D → A such that ft = k and tg = h. Show that
every regular monomorphism is strong.
(ii) Let C be the finite category with four objectsA,B,C,D and non-identity morphisms f : A → B,
g : B → C, h : B → C, k : A → C, l : D → B and m : D → C satisfying gf = hf = k and
gl = kl = m. Show that the morphism f is strong monic but not regular monic.
(iii) Let 2 be the category with two objects 0, 1 and one non-identity morphism 0 → 1, and let D
be the full subcategory of C (where C is as in (ii)) on the objects A,B and C. Find an example of
an epimorphism in the functor category [2,D] which is not pointwise epic. [Later in the course we
shall prove that if D has pushouts then epimorphisms in any functor category [C,D] coincide with
pointwise epimorphisms.]

5. Let (f : A → B, g : B → C) be a composable pair of morphisms.
(i) If both f and g are monic (resp. strong monic, split monic), show that the composite gf is too.
(ii) If gf is monic (resp. strong monic, split monic), show that f is too.
(iii) If gf is regular monic and g is monic, show that f is regular monic.
(iv) Let C be the full subcategory of AbGp whose objects are groups having no elements of
order 4 (though they may have elements of order 2). Show that multiplication by 2 is a regular
monomorphism Z → Z in C, but that its composite with itself is not. [Hint : first show that
equalizers in C coincide with those in AbGp.] In the same category, find a pair of morphisms
(f, g) such that gf is regular monic but f is not.

6. A morphism e : A → A is called idempotent if ee = e. An idempotent e is said to split if it can
be factored as fg where gf is an identity morphism.
(i) Show that an idempotent e splits iff the pair (e, 1dom e) has an equalizer, iff the same pair has
a coequalizer.
(ii) Let E be a class of idempotents in a category C: show that there is a category C[Ě ] whose
objects are the members of E , whose morphisms e → d are those morphisms f : dom e → dom d
in C for which dfe = f , and whose composition coincides with composition in C. [Hint : first show
that the single equation dfe = f is equivalent to the two equations df = f = fe. Note that the
identity morphism on an object e is not 1dom e, in general.]
(iii) If E contains all identity morphisms of C, show that there is a full and faithful functor I : C →
C[Ě ], and that an arbitrary functor T : C → D can be factored as T̂ I for some T̂ iff it sends the
members of E to split idempotents in D.
(iv) If all idempotents in C split, C is said to be Cauchy-complete; the Cauchy-completion Ĉ of an
arbitrary category C is defined to be C[Ě ], where E is the class of all idempotents in C. Verify that
the Cauchy-completion of a category is indeed Cauchy-complete.
(v) Show that if D is Cauchy-complete (for example, if D has equalizers), then the functor categories
[C,D] and [Ĉ,D] are equivalent.

7. (i) Let C be a small category and F : C → Set a functor. F is said to be irreducible if, whenever
we are given a family of functors (Gi | i ∈ I) and an epimorphism α :

∐
i∈I Gi → F (where

∐

denotes disjoint union, i.e. coproduct in [C,Set]), there exists i ∈ I such that the restriction of α
to Gi is still epimorphic. Show that F is irreducible iff there is an epimorphism C (A,−) → F for
some A ∈ ob C. [For the purposes of this question, you may assume the result that epimorphisms
in [C,Set] coincide with pointwise epimorphisms; cf. the remark at the end of question 4.]
(ii) Deduce that F is irreducible and projective iff there is a split epimorphism C (A,−) → F for
some A.
(iii) Hence show that if C is Cauchy-complete, then the irreducible projectives in [C,Set] are exactly
the representable functors.
(iv) Deduce that if C and D are small categories then the functor categories [C,Set] and [D,Set]
are equivalent iff their Cauchy-completions Ĉ and D̂ are equivalent.

8. A functor F : C → Set is called a monofunctor if F (f) is a monomorphism (that is, injective) for
every morphism f of C. Show that the following conditions on a small category C are equivalent:
(i) Every morphism of C is monic.
(ii) Every representable functor C → Set is a monofunctor.
(iii) Every functor C → Set is an epimorphic image of a monofunctor.
Under what hypotheses on C is every functor C → Set a monofunctor?


