CATEGORY THEORY EXAMPLES 1

PTJ Mich. 2018

1. Let *L* be a distributive lattice (i.e. a partially ordered set with finite joins and meets — including the empty join 0 and the empty meet 1 — satisfying the distributive law

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$$

for all $a, b, c \in L$). Show that there is a category Mat_L whose objects are the natural numbers, and whose morphisms $n \to p$ are $p \times n$ matrices with entries from L, where we define 'multiplication' of such matrices by analogy with that of matrices over a field, interpreting \wedge as multiplication and \vee as addition. Show also that if L is the two-element lattice $\{0, 1\}$, then Mat_L is equivalent to the category Rel_f of finite sets and relations between them.

2. (i) Show that the assertion 'Every small category has a skeleton' implies the axiom of choice. [Given a family $(A_i \mid i \in I)$ of nonempty sets, consider a suitable category whose objects are pairs (i, a) with $a \in A_i$.]

(ii) Show that the assertion 'If C_0 is a skeleton of a small category C, then $C \simeq C_0$ ' implies the assertion that, given a family $(A_i \mid i \in I)$ of nonempty sets, we can find a family $(A'_i \mid i \in I)$ where each A'_i is a nonempty finite subset of A_i . [In standard ZF set theory, this is equivalent to the full axiom of choice. Take a category whose objects are the members of $I \times \{0, 1\}$, with the morphisms $(i, j) \to (i, k)$ being formal finite sums $\sum_{s=1}^{t} n_s a_s$ where all the a_s are in A_i and the n_s are integers with $\sum_{s=1}^{t} n_s = k - j$.]

3. By an *automorphism* of a category \mathcal{C} , we of course mean a functor $F : \mathcal{C} \to \mathcal{C}$ with a (2-sided) inverse. We say an automorphism F is *inner* if it is naturally isomorphic to the identity functor. [To see the justification for this name, think about the case when \mathcal{C} is a group.]

(i) Show that the inner automorphisms of C form a normal subgroup of the group of all automorphisms of C. [Don't worry about whether these groups are sets or proper classes!]

(ii) If 1 is a terminal object of C (i.e. an object such that for any A there is a unique morphism $A \to 1$), show that F(1) is also a terminal object (and hence isomorphic to 1) for any automorphism F of C. Deduce that, for any automorphism F of **Set**, there is a *unique* natural isomorphism from the identity to F. [*Hint*: Yoneda!]

(iii) Let \mathcal{C} be a full subcategory of **Top** containing the singleton space 1 and the *Sierpiński space* S, i.e. the two-point space $\{0,1\}$ in which $\{1\}$ is open but $\{0\}$ is not. Show that S is, up to isomorphism, the unique object of \mathcal{C} which has precisely three endomorphisms, and deduce that $FS \cong S$ for any automorphism F of \mathcal{C} . Show also that there is a unique natural isomorphism $\alpha: U \to UF$, where $U: \mathcal{C} \to \mathbf{Set}$ is the forgetful functor. By considering naturality squares of the form

where f is continuous, deduce that, if C also contains a space in which not every union of closed sets is closed, then α_S is continuous. Hence show that F is (uniquely) naturally isomorphic to the identity functor.

(iv) If C is the category of finite topological spaces, show that the group of inner automorphisms of C has index 2 in the group of all automorphisms.

4. (i) A monomorphism $f: A \to B$ in a category is said to be *strong* if, for every commutative square

with g epic, there exists a (necessarily unique) $t: D \to A$ such that ft = k and tg = h. Show that every regular monomorphism is strong.

(ii) Let C be the finite category with four objects A, B, C, D and non-identity morphisms $f: A \to B$, $g: B \to C, h: B \to C, k: A \to C, l: D \to B$ and $m: D \to C$ satisfying gf = hf = k and gl = kl = m. Show that the morphism f is strong monic but not regular monic.

(iii) Let **2** be the category with two objects 0, 1 and one non-identity morphism $0 \to 1$, and let \mathcal{D} be the full subcategory of \mathcal{C} (where \mathcal{C} is as in (ii)) on the objects A, B and C. Find an example of an epimorphism in the functor category $[\mathbf{2}, \mathcal{D}]$ which is not pointwise epic. [Later in the course we shall prove that if \mathcal{D} has pushouts then epimorphisms in any functor category $[\mathcal{C}, \mathcal{D}]$ coincide with pointwise epimorphisms.]

5. Let $(f: A \to B, g: B \to C)$ be a composable pair of morphisms.

(i) If both f and g are monic (resp. strong monic, split monic), show that the composite gf is too. (ii) If gf is monic (resp. strong monic, split monic), show that f is too.

(iii) If gf is regular monic and g is monic, show that f is regular monic.

(iv) Let C be the full subcategory of **AbGp** whose objects are groups having no elements of order 4 (though they may have elements of order 2). Show that multiplication by 2 is a regular monomorphism $\mathbf{Z} \to \mathbf{Z}$ in C, but that its composite with itself is not. [*Hint*: first show that equalizers in C coincide with those in **AbGp**.] In the same category, find a pair of morphisms (f, g) such that gf is regular monic but f is not.

6. A morphism $e: A \to A$ is called *idempotent* if ee = e. An idempotent e is said to *split* if it can be factored as fg where gf is an identity morphism.

(i) Show that an idempotent e splits iff the pair $(e, 1_{\text{dom } e})$ has an equalizer, iff the same pair has a coequalizer.

(ii) Let \mathcal{E} be a class of idempotents in a category \mathcal{C} : show that there is a category $\mathcal{C}[\mathcal{E}]$ whose objects are the members of \mathcal{E} , whose morphisms $e \to d$ are those morphisms $f: \text{dom } e \to \text{dom } d$ in \mathcal{C} for which dfe = f, and whose composition coincides with composition in \mathcal{C} . [*Hint*: first show that the single equation dfe = f is equivalent to the two equations df = f = fe. Note that the identity morphism on an object e is not $1_{\text{dom } e}$, in general.]

(iii) If \mathcal{E} contains all identity morphisms of \mathcal{C} , show that there is a full and faithful functor $I: \mathcal{C} \to \mathcal{C}[\check{\mathcal{E}}]$, and that an arbitrary functor $T: \mathcal{C} \to \mathcal{D}$ can be factored as $\widehat{T}I$ for some \widehat{T} iff it sends the members of \mathcal{E} to split idempotents in \mathcal{D} .

(iv) If all idempotents in \mathcal{C} split, \mathcal{C} is said to be *Cauchy-complete*; the *Cauchy-completion* $\widehat{\mathcal{C}}$ of an arbitrary category \mathcal{C} is defined to be $\mathcal{C}[\check{\mathcal{E}}]$, where \mathcal{E} is the class of all idempotents in \mathcal{C} . Verify that the Cauchy-completion of a category is indeed Cauchy-complete.

(v) Show that if \mathcal{D} is Cauchy-complete (for example, if \mathcal{D} has equalizers), then the functor categories $[\mathcal{C}, \mathcal{D}]$ and $[\widehat{\mathcal{C}}, \mathcal{D}]$ are equivalent.

7. (i) Let \mathcal{C} be a small category and $F: \mathcal{C} \to \mathbf{Set}$ a functor. F is said to be *irreducible* if, whenever we are given a family of functors $(G_i \mid i \in I)$ and an epimorphism $\alpha : \coprod_{i \in I} G_i \to F$ (where \coprod denotes disjoint union, i.e. coproduct in $[\mathcal{C}, \mathbf{Set}]$), there exists $i \in I$ such that the restriction of α to G_i is still epimorphic. Show that F is irreducible iff there is an epimorphism $\mathcal{C}(A, -) \to F$ for some $A \in \text{ob } \mathcal{C}$. [For the purposes of this question, you may assume the result that epimorphisms in $[\mathcal{C}, \mathbf{Set}]$ coincide with pointwise epimorphisms; cf. the remark at the end of question 4.]

(ii) Deduce that F is irreducible and projective iff there is a split epimorphism $\mathcal{C}(A, -) \to F$ for some A.

(iii) Hence show that if C is Cauchy-complete, then the irreducible projectives in [C, Set] are exactly the representable functors.

(iv) Deduce that if \mathcal{C} and \mathcal{D} are small categories then the functor categories $[\mathcal{C}, \mathbf{Set}]$ and $[\mathcal{D}, \mathbf{Set}]$ are equivalent iff their Cauchy-completions $\widehat{\mathcal{C}}$ and $\widehat{\mathcal{D}}$ are equivalent.

8. A functor $F: \mathcal{C} \to \mathbf{Set}$ is called a *monofunctor* if F(f) is a monomorphism (that is, injective) for every morphism f of \mathcal{C} . Show that the following conditions on a small category \mathcal{C} are equivalent: (i) Every morphism of \mathcal{C} is monic.

(ii) Every representable functor $\mathcal{C} \to \mathbf{Set}$ is a monofunctor.

(iii) Every functor $\mathcal{C} \to \mathbf{Set}$ is an epimorphic image of a monofunctor.

Under what hypotheses on \mathcal{C} is every functor $\mathcal{C} \to \mathbf{Set}$ a monofunctor?