ALGEBRAIC SURFACES, SHEET II: LENT 2021

Throughout this sheet, the symbol k will denote an algebraically closed field.

- 1. Let X be the blowup of \mathbb{P}^2 at a single point. Let H and E be the divisor classes of a line in \mathbb{P}^2 pulled back to X and an exceptional divisor. Prove that the line bundle $\mathcal{O}_X(H-E)$ is base point free, and describe the resulting map to projective space.
- 2. Prove that the line bundle 2H E on the blowup of \mathbb{P}^2 at a point is very ample.
- 3. Prove that \mathbb{P}^2 blown up at 3 non-collinear points is isomorphic to $\mathbb{P}^1 \times \mathbb{P}^1$ blown up at 2 points.
- 4. Observe that quartic plane curves are given by an open subset of \mathbb{P}^{14} . Using this observation, for every smooth curve C, construct a surface X equipped with a morphism $X \to C$, whose generic fiber is a genus 3 curve, but X is not a product.
- 5. Prove that a generic surface in \mathbb{P}^3 of degree at least 4 contains no lines. To begin, consider the Grassmannian $\mathbb{G}(1,3)$ of lines in \mathbb{P}^3 . Form the incidence correspondence of hypersurfaces of degree d and examine the dimensions of the two projections.
- 6. Prove that a smooth curve C on a surface S is a (-1)-curve if and only if $C \cdot C$ and $C \cdot K_S$ are both negative.
- 7. By examining the Picard rank¹ show that every surface is birational to a surface that does not have (-1)-curves.
- 8. Using the universal property of blowups, prove that if $F : X' \to X$ is a birational morphism of surfaces, then F can be factorized into a sequence of blowups.
- 9. Prove that on the surface obtained by blowing up \mathbb{P}^2 at 9 general points, neither the canonical divisor nor the anticanonical divisor is ample.
- 10. Prove that on the blowup of \mathbb{P}^2 at 7 points, the line bundle $2H E_1 \ldots E_7$ is basepoint free but not ample. Find all its (-1) curves. Describe the resulting map to projective space.
- 11. Prove that the surface $\mathbb{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(2))$ contains a curve² of self-intersection -2. Construct a birational morphism $X \to X_0$ such that C is contracted. By using reasoning that is independent from Castelnuovo's theorem, prove that X_0 is singular.
- 12. Prove that a bidegree (3,1) hypersurface in $\mathbb{P}^2 \times \mathbb{P}^1$ is birational to \mathbb{P}^2 . Describe this surface as a sequence of blowups of \mathbb{P}^2 .

Dhruv Ranganathan, dr508@cam.ac.uk

¹Recall that the Picard rank is the rank of the group of divisors up to numerical equivalence. You may take as given that this number is finite for any surface.

²A hint: this is a family of \mathbb{P}^1 's over \mathbb{P}^1 . Use the structure of this bundle to find the curve