## Topics in Algebraic Geometry

## Example Sheet II, 2025.

*Note*: If you would like to receive feedback, please turn in solutions to Questions 2, 7, and 9 by Thursday, November 13th by noon in the usual way.

- 1. We check the details of the construction of Proj in lecture. Recall, in analogy with Spec A, an affine scheme, we can define a *projective scheme*. Let  $S = \bigoplus_{d=0}^{\infty} S_d$  be a graded ring. We will define Proj S.
  - i) We write  $S^+ = \bigoplus_{d=1}^{\infty} S_d$ , the *irrelevant ideal*. Define Proj S to be the set of all homogeneous prime ideals of S not containing the irrelevant ideal. If  $I \subseteq S$  is a homogeneous ideal, let V(I) denote the set of all primes in Proj S containing I. Show these form the closed sets of a topology on Proj S.
  - ii) We define a sheaf  $\mathcal{O}$  on  $\operatorname{Proj} S$ . For  $\mathfrak{p} \in \operatorname{Proj} S$ , let  $S_{(\mathfrak{p})}$  be the set of elements of the localization  $S_{\mathfrak{p}}$  which are homogeneous of degree zero (i.e., a ratio of two elements of S of the same degree). Define for  $U \subseteq \operatorname{Proj} S$  open the ring  $\mathcal{O}(U)$  to be the set of functions

$$s:U\to\coprod_{\mathfrak{p}\in U}S_{(\mathfrak{p})}$$

such that  $s(\mathfrak{p}) \in S_{(\mathfrak{p})}$  and every point  $\mathfrak{p} \in U$  has an open neighbourhood V for which there exists  $f, g \in S$  homogeneous of the same degree,  $g \notin \mathfrak{q}$  for all  $\mathfrak{q} \in V$ , such that  $s(\mathfrak{q}) = f/g$  for  $\mathfrak{q} \in V$ . Then show:

- a) The stalk of  $\mathcal{O}$  at  $\mathfrak{q}$  is  $S_{(\mathfrak{q})}$ .
- b) For any homogeneous  $f \in S_+$ , let  $D_+(f)$  be the set of primes of Proj S not containing f. Show the sets  $D_+(f)$  cover Proj S, and for each such open set, there is an isomorphism of locally ringed spaces

$$(D_+(f), \mathcal{O}|_{D_+(f)}) \cong \operatorname{Spec} S_{(f)}.$$

Here  $S_{(f)}$  denotes the subring of elements of degree 0 in the localization  $S_f$ . [Hint: This is a bit tricky. It is easy to define a map  $\psi: D_+(f) \to \operatorname{Spec} S_{(f)}$ . However, constructing its inverse  $\theta$  is not so easy. Given  $\mathfrak{q} \in \operatorname{Spec} S_{(f)}$ , set

$$\mathfrak{q}_n := \{ s \in S_n \, | \, s^{\deg f} / f^n \in \mathfrak{q} \}.$$

Show that  $\mathfrak{q}_n$  is closed under addition and that  $\theta(\mathfrak{q}) = \bigoplus_n \mathfrak{q}_n$  is a homogenoeous prime ideal in  $D_+(f)$ .

- c) Proj S is a scheme.
- d) Show that if k is an algebraically closed field, then the set of closed points (i.e., points x such that the closure of  $\{x\}$  is  $\{x\}$ ) of  $\operatorname{Proj} k[x_0,\ldots,x_n]$  are in one-to-one correspondence with points of  $(k^{n+1}\setminus\{0\})/k^*$ , with the usual action of  $k^*$  given by scalar multiplication. Show that if  $I\subseteq k[x_0,\ldots,x_n]$  is a homogeneous ideal, then the closed points of  $\operatorname{Proj} k[x_0,\ldots,x_n]/I$  are in one-to-one correspondence with equivalence classes of points  $(a_0,\ldots,a_n)\in (k^{n+1}\setminus\{0\})/k^*$  such that  $f(a_0,\ldots,a_n)=0$  for all  $f\in I$  homogeneous.
- 2. Let X be a scheme, with open affine subsets  $U = \operatorname{Spec} A$ ,  $V = \operatorname{Spec} B$ . Show that  $U \cap V$  can be covered by open affine subschemes  $\{U_i\}$  such that there are elements  $f_i \in A$ ,  $g_i \in B$  with  $U_i = D(f_i) \subset U$  and  $U_i = D(g_i) \subseteq V$ .

We will now define a number of properties of schemes and morphisms of schemes. This material can be found as a mixture of the text and the exercises of Chapter II, §3 of Hartshorne. Consult that text if you get stuck!

3. We say a scheme X is *irreducible* if it is irreducible as a topological space, i.e., whenever  $X = X_1 \cup X_2$  with  $X_1$ ,  $X_2$  closed subsets, then either  $X_1 = X$  or  $X_2 = X$ .

We say a scheme X is reduced if for every  $U \subseteq X$  open,  $\mathcal{O}_X(U)$  has no nilpotents.

We say a scheme X is integral if for every  $U \subseteq X$  open,  $\mathcal{O}_X(U)$  is an integral domain.

Show that a scheme is integral if and only if it is reduced and irreducible.

4. We say a scheme is *locally Noetherian* if it can be covered by affine open subsets Spec  $A_i$  with  $A_i$  a Noetherian ring. We say a scheme is *Noetherian* if it can be covered by a *finite* number of open affine subsets Spec  $A_i$  with  $A_i$  Noetherian.

Show that a scheme X is locally Noetherian if and only if for every open affine subset  $U = \operatorname{Spec} A$ , A is a Noetherian ring. [Hint: This is II Prop. 3.2 in Hartshorne. Do have a go at this before you look at his proof. At least try to reduce to the following statement before you peek: given a ring A and a finite collection of elements  $f_i \in A$  which generate the unit ideal, suppose  $A_{f_i}$  is Noetherian for each i. Then A is Noetherian.]

5. A morphism  $f: X \to Y$  is locally of finite type if there exists a covering Y by open affine subsets  $V_i = \text{Spec } B_i$ , such that for each  $i, f^{-1}(V_i)$  can be covered by open affine subsets  $U_{ij} = \text{Spec } A_{ij}$ , where each  $A_{ij}$  is a finitely generated  $B_i$ -algebra.

The morphism is of finite type if the cover of  $f^{-1}(V_i)$  above can be taken to be finite.

Show that a morphism  $f: X \to Y$  is locally of finite type if and only if for every open affine subset  $V = \operatorname{Spec} B$  of  $Y, f^{-1}(V)$  can be covered by open affine subsets  $U_j = \operatorname{Spec} A_j$ , where each  $A_j$  is a finitely generated B-algebra.

6. For each of the properties defined above of schemes or morphisms, given an example of a scheme or morphism which violates that property. Give an example of a morphism which is locally of finite type but not of finite type.

**Remark.** In the language above, we defined a variety as an integral scheme of finite type over Spec k, for k an algebraically closed field.

- 7. Let X be an integral scheme. Show there is a unique point  $\eta$  such that the closure of  $\{\eta\}$  is X; this is called the generic point of X. Show that the stalk of  $\mathcal{O}_X$  at  $\eta$  is a field, called the function field of X, denoted by K(X). Show that if  $U = \operatorname{Spec} A$  is any open affine subset of X, then K(X) is the field of fractions of A.
- 8. Normalization. A scheme is normal if all its local rings are integrally closed domains. Let X be an integral scheme. For each open affine subset  $U = \operatorname{Spec} A$  of X, let  $\tilde{A}$  be the integral closure of A in its quotient field, and let  $\tilde{U} = \operatorname{Spec} \tilde{A}$ . Show that one can glue the schemes  $\tilde{U}$  to obtain a normal integral scheme  $\tilde{X}$ , called the normalization of X. Show that there is a morphism  $\tilde{X} \to X$  having the following universal property: for every normal integral scheme Z, and for every dominant morphism  $f: Z \to X$ , f factors uniquely through  $\tilde{X}$ . [A morphism  $f: Z \to X$  is dominant if f(Z) is a dense subset of X.]
- 9. Describe the fibres over all points of the target space for the following morphisms between affine schemes. In each case, the corresponding homomorphism of rings is the obvious one. Here k denotes a field. Which fibres are irreducible or reduced?
  - 1. Spec  $k[T, U]/(TU 1) \to \operatorname{Spec} k[T]$ .
  - 2. Spec  $k[T, U]/(T^2 U^2) \to \operatorname{Spec} k[T]$ .
  - 3. Spec  $k[T, U, V, W]/((U+T)W, (U+T)(U^3+U^2+UV^2-V^2))) \to \operatorname{Spec} k[T].$
  - 4. Spec  $\mathbb{Z}[T] \to \operatorname{Spec} \mathbb{Z}$ .
  - 5. Spec  $\mathbb{Z}[T]/(T^2+1) \to \operatorname{Spec} \mathbb{Z}$ . [Number theorists: what does the calculation you just did mean from the point of view of algebraic number theory?]
  - 6. Spec  $\mathbb{C} \to \operatorname{Spec} \mathbb{Z}$ .
- 10. We say a commutative diagram

$$\begin{array}{ccc}
A & \longrightarrow B \\
\downarrow & & \downarrow \\
C & \longrightarrow D
\end{array}$$

is Cartesian if the induced morphism  $A \to B \times_D C$  is an isomorphism. Show the following diagrams are Cartesian in any category:

$$\begin{array}{ccccc}
X \times_S Y & \longrightarrow S & X & \longrightarrow Y \\
\downarrow & & \downarrow_{\Delta} & & \Gamma_f \downarrow & & \downarrow_{\Delta} \\
X \times_T Y & \longrightarrow S \times_T S & X \times_S Y & \longrightarrow Y \times_S Y
\end{array}$$

In the first diagram one is given morphisms  $X, Y \to S \to T$ , and the morphism  $\Delta$  is induced by the universal property of  $S \times_T S$  using the identity  $S \to S$  twice. In the second diagram, we assume given X, Y objects over S and a morphism  $f: X \to Y$  over S. Then  $\Delta$  is defined as before and  $\Gamma_f$  is the morphism induced by the identity  $X \to X$  and  $f: X \to Y$ .