III Algebra Michaelmas Term 2018

EXAMPLE SHEET 2

All rings on this sheet are commutative with a 1.

- 1. Show that r lies in the Jacobson radical of R if and only if 1-rs is a unit for all s in R.
- 2. Show that for a proper ideal I of a Noetherian ring R the condition that R/I has only one associated prime P is equivalent to the condition that if ab lies in I but a does not then some power b^n lies in I. Show that if these conditions hold then P is the radical of I.
- 3. A ring is Artinian if it satisfies the descending chain condition on ideals. Show that the nilradical of an Artinian ring is nilpotent.
- 4. Show that in an Artinian ring all the prime ideals are maximal and that there are only finitely many of them.
- 5. Show that every Artinian ring is Noetherian.
- 6. Show that a Noetherian ring of zero dimension is Artinian.
- 7. Prove that any field which is finitely generated as a ring is finite.
- 8. Let $R \leq T$ be rings with $T \setminus R$ closed under multiplication. Show that R is integrally closed in T.
- 9. Show that being integrally closed is a local property of integral domains.
- 10. A valuation ring is an integral domain R such that for any x in the field K of fractions of R, at least one of x or x^{-1} lies in R. Show that in a valuation ring any finitely generated ideal is principal.
- 11. Let R be a valuation subring of a field K. The group U of units of R is a subgroup of the multiplicative group K^{\times} of K. Let $\Gamma = K^{\times}/U$. If α and β are represented by x and $y \in K$ define $\alpha \geq \beta$ to mean $xy^{-1} \in R$. Show that this defines a total ordering on Γ which is compatible with the group structure (i.e. $\alpha \geq \beta$ implies $\alpha \gamma \geq \beta \gamma$ for all $\gamma \in \Gamma$). (In other words Γ is a totally ordered Abelian group. It is called the value group of A.) Let $v: K^{\times} \longrightarrow \Gamma$ be the canonical homomorphism. Show that $v(x+y) \geq \min(v(x), v(y))$ for all $x, y \in K^{\times}$.

- 12. Let R be an integral domain and K be its field of fractions. Show that the integral closure of R in K is the intersection of all the valuation subrings of K that contain R.
- 13. Let $R \leq T$ be rings with T generated by n elements as an R-module. Show that over every maximal ideal of R there lies at most n maximal ideals of T.
- 14. Let T be a finitely generated k-algebra, integral over an algebra R and let P be a prime ideal of R. Show that T has only finitely many primes lying over P.
- 15. Give an example of a Noetherian integral domain which has maximal ideals of different heights.
- 16. Let k be a field. Show that every k-subalgebra R of k[X] is a finitely generated k-algebra and is of dimension 1 if $R \neq k$.
- 17. Let Q_1, \ldots, Q_n be prime ideals of a ring R. Let I be an ideal and suppose it is contained in the union of these primes. Show that I is contained in some Q_i .
- 18. Let R be a Noetherian ring and $P_1 < P_2$ be prime ideals of R. Suppose there is some other prime Q lying strictly between P_1 and P_2 , and show that there are infinitely many such Q.

brookes@dpmms.cam.ac.uk