
TECHNIQUES IN COMBINATORICS: EXAMPLES SHEET 2

Michaelmas Term 2014 W. T. G.

1. Let G be a graph with n vertices, αn2 edges, and βn3 triangles. Prove that G has an

induced subgraph with bn/2c vertices, (α+ o(1))n2/4 edges and (β + o(1))n3/8 triangles.

2. Let X and Y be random variables with EX = a and EY = b. Prove that there is a

non-zero probability that X ≥ aY/2b and X ≥ a/2.

3. Let G be a bipartite graph with finite vertex sets X and Y and density δ. Suppose

that the 4-cycle density of G is δ4(1 + γ) for a positive constant γ. Prove that there are

subsets A ⊂ X and B ⊂ G such that |η(A,B)− δαβ| ≥ θ, where θ > 0 depends on γ and

δ only. [Hint: we have already proved this result when the graph is regular. Show first

that if there are several vertices in X that do not have approximately the average degree,

then the result is true and we can even take B = Y . This allows you to assume that the

graph is approximately regular. Adapt the proof given in lectures so that it works with

this weaker assumption. Don’t worry if your proof is a bit on the ugly side.]

4. Let p be a prime and let A ⊂ Zp be a set of density δ. Prove that A8 contains at least

δ8p4 “cuboids”: that is, sequences of the form

(x, x+ a, x+ b, x+ c, x+ a+ b, x+ a+ c, x+ b+ c, x+ a+ b+ c).

5. Let X, Y and Z be finite sets and let f : X × Y × Z → C. Let u : X × Y → C,

v : Y ×Z → C and w : X ×Z → C. By repeatedly applying the techniques of (i) squaring

both sides, (ii) pulling out variables, (iii) applying Cauchy-Schwarz, and (iv) expanding

out squares, prove an inequality of the form

|Ex,y,zf(x, y, z)u(x, y)v(y, z)w(x, z)| ≤ T (f)‖u‖∞‖v‖∞‖w‖∞.

[Hint: it makes things tidier if you assume that ‖u‖∞, ‖v‖∞ and ‖w‖∞ are all at most 1

and simply aim for an upper bound that eliminates u, v and w altogether.]
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6. Let X, Y and Z be finite sets and let f : X × Y × Z → C. Let u : X → C, v : Y → C
and w : Z → C. Prove an inequality of the form

Ex,y,zf(x, y, z)u(x)v(y)w(z) ≤ U(f)‖u‖2‖v‖2‖w‖2.

7. Let X and Y be finite sets and let f1, f2, f3, f4 be four functions from X × Y to C.

Define the generalized inner product [f1, f2, f3, f4] to be

Ex,x′∈X,y,y′∈Y f1(x, y)f2(x, y′)f3(x′, y)f4(x
′, y′).

(i) Prove the generalized Cauchy-Schwarz inequality∣∣[f1, f2, f3, f4]∣∣ ≤ ‖f1‖�‖f2‖�‖f3‖�‖f4‖�.
[Hint: for each fixed x, x′, the expectation over y and y′ is the product of an expectation

over y and an expectation over y′. Use that and the usual Cauchy-Schwarz inequality.

That will not complete the proof, but it will get you well on your way.]

(ii) By considering the quantity ‖f + g‖4�, deduce that ‖.‖� is a norm.

8. Let G be a graph with n vertices and average degree αn. Does it follow that there are

at least α3n4 quadruples (x, y, z, w) of vertices such that xy, yz and zw are all edges of G?

9. Let G be a graph with n vertices and adjacency matrix A. Since A is real and symmetric,

it has an orthonormal basis of eigenvectors u1, . . . , un. Let λ1, . . . , λn be the corresponding

eigenvalues. Let us write u ⊗ v for the function that takes (x, y) to u(x)v(y), and let us

think of A as a function of two variables.

(i) Prove that A =
∑

i λiui ⊗ ui.
(ii) Give a combinatorial interpretation of the quantity

∑
i λ

2
i .

(iii) Give a combinatorial interpretation of the quantity
∑

i λ
4
i .

(iv) Prove that G has a non-negative eigenvector. [Hint: consider the map that takes a

non-negative function f with ‖f‖1 = 1 to the function Af/‖Af‖1. This is a continuous

function from a simplex to itself, so has a fixed point.]

(v) If G has average degree d, then prove that the largest eigenvector of A is at least d.

[Hint: let f be the constant function 1 and consider the quantity ‖Af‖22.]
(vi) Prove that G is quasirandom if and only if the second largest eigenvalue has small

modulus. (Part of your task is to make this statement precise. The interpretation of
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graph-theoretic parameters in terms of eigenvalues is important for many reasons, one of

which is that there are efficient algorithms for calculating eigenvalues.)

10. Generalize an argument from lectures to prove the following result. Let X1, . . . , Xk

be finite sets and for each i 6= j let Gij be a quasirandom bipartite graph with vertex sets

Xi and Xj and density αij. Let H be a graph with vertex set {v1, . . . , vk} and let φ be

a random map from V (H) to X1 ∪ · · · ∪ Xk such that φ(vi) ∈ Xi for each i. Then the

probability that φ(vi) is joined to φ(vj) in Gij for every pair ij such that vivj is an edge of

H is approximately
∏

vivj∈E(H) αij.

11. Prove that for every positive integer k there exists a prime p and positive integers

x1, . . . , xk such that no xi − xj with i, j distinct is a quadratic residue mod p.

12. Let A be a real symmetric matrix. Prove the inequality

|〈Ax, x〉| ≤ ‖x‖`2〈A2x, x〉1/2.

Deduce that for every k we have

|〈Ax, x〉| ≤ ‖x‖2(1−2
−k)

`2
〈A2kx, x〉1/2k .

This can be helpful for proving that a sparse graph has the expected number of edges

between any two large sets. If the graph is too sparse, then most 4-cycles will be degenerate,

which makes the 4-cycle norm unsuitable. However, by raising the graph to a power, we

can make it denser, which sometimes helps to get round the problem.

Comments, corrections etc. to wtg10@dpmms.cam.ac.uk


