TOPICS IN ANALYSIS (Lent 2025): Example Sheet 2

Comments, corrections are welcome at any time.

a.g.kovalev@dpmms.cam.ac.uk.

- **1.** Let $p(z) = z^2 4z + 3$ and let $\gamma : [0,1] \to \mathbb{C}$ be given by $\gamma(t) = p(2e^{2\pi it})$. Show that the closed path associated with γ does not pass through 0. Compute $w(\gamma, 0)$:
- (i) non-rigorously direct from the definition by obtaining enough information about γ , (You could write the real and imaginary parts of $\gamma(t)$ in terms of $\cos t$ and $\sin t$ and find where and how γ crosses the real axis.)
 - (ii) by factoring, and
 - (iii) by the dog-walking lemma.
- **2.** Let $g: S^1 \to S^1$ be a continuous map, where $S^1 = \{z \in \mathbb{C} : |z| = 1\}$. If there is a continuous extension of g to the closed unit disk $D = \{z \in \mathbb{C} : |z| \leq 1\}$ (i.e. if there is a continuous map $G: D \to S^1$ such that G(z) = g(z) for each $z \in S^1$), prove that
 - (a) g(z) = z for some $z \in S^1$.
 - (b) q(z) = -z for some $z \in S^1$.
- **3.** Does there exist a function $f:[0,1] \to \mathbb{R}$ with a discontinuity which can be approximated uniformly on [0,1] by polynomials?
- **4.** Let $f:[0,1] \to \mathbb{R}$ be a continuous function which is not a polynomial. If p_n is a sequence of polynomials converging uniformly to f on [0,1], and $d_n = \deg p_n$, prove that $d_n \to \infty$.
- **5.** Suppose $f: [-1,1] \to \mathbb{R}$ is (n+1)-times continuously differentiable on [-1,1] and let $J_n = \{x_0, x_1, \ldots, x_n\}$ be a set of n+1 distinct points in [-1,1]. Let P_{J_n} be the interpolating polynomial of degree $\leq n$ determined by the requirement $P_{J_n}(x_j) = f(x_j)$ for each $j = 0, 1, 2, \ldots, n$. Let $\beta_{J_n}(x) = (x x_0)(x x_1) \ldots (x x_n)$. Prove that for each $x \in [-1, 1]$, there exists $\zeta \in (-1, 1)$ such that

$$f(x) - P_{J_n}(x) = \frac{f^{(n+1)}(\zeta)}{(n+1)!} \beta_{J_n}(x).$$

[Hint: If $x = x_j$ this holds trivially. If not, consider $g(y) = f(y) - P_{J_n}(y) - \lambda \beta_{J_n}(y)$ where λ is chosen so that g(x) = 0.]

Deduce that if f is infinitely differentiable in [-1,1] and $\sup_{x\in[-1,1]}|f^{(n)}(x)|\leq M^n$ for some fixed constant M and all $n=1,2,\ldots$, then the interpolating polynomials P_{J_n} (for arbitrary choices of sets of interpolation points $J_n=\{x_0^{(n)},\ldots,x_n^{(n)}\}\subset[-1,1]$) converge uniformly to f on [-1,1] as $n\to\infty$.

6. Fix $n \ge 1$ and let J be any set of n distinct points $\{x_1, \ldots, x_n\} \subset [-1, 1]$. Let β_J be the polynomial defined by $\beta_J(x) = (x - x_1)(x - x_2) \ldots (x - x_n)$ and set

$$F(x_1,...,x_n) = \sup_{x \in [-1,1]} |\beta_J(x)|.$$

By considering the *n*th Chebyshev polynomial or otherwise, prove that F is minimized when $x_k = \cos \frac{(2k-1)\pi}{2n}$, for $k = 1, 2, \dots, n$.

- 7. It can be shown that the converse of the equal ripple criterion holds. That is, if $f \in C([0,1])$ and p is a polynomial of degree less than n which minimizes $||f-q||_{\infty} = \sup_{x \in [0,1]} |f(x)-q(x)|$ among all polynomials q of degree less than n, then there exist n+1 distinct points $0 \le a_0 \le a_1 < \ldots < a_n \le 1$ such that either $f(a_k)-p(a_k)=(-1)^k||f-p||_{\infty}$, for all $k=0,1,\ldots,n$ or $f(a_k)-p(a_k)=(-1)^{k+1}||f-p||_{\infty}$, for all $k=0,1,\ldots,n$ Assuming this, prove that for any given $f \in C([0,1])$ and each positive integer n, the minimizer of $||f-q||_{\infty}$ among all polynomials q of degree less than n is unique. (Recall that the existence of such a minimizer was proved in lectures.)
- **8.** If $f: \mathbb{R} \to \mathbb{R}$ is continuous, show that there exist polynomials $p_n, n = 1, 2, ...$, such that $p_n(x) \to f(x)$ for every $x \in \mathbb{R}$.
- **9.** Let $B_n: C[0,1] \to C[0,1]$ be the Bernstein operator defined by

$$B_n f(x) = \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k}.$$

Show directly that $B_n f \to f$ uniformly on [0,1] for the function $f(x) = x^3$.

- 10. Calculate the first five Chebyshev polynomials.
- 11. (i) Use orthogonality (the Gram-Schmidt method) to compute the Legendre polynomials p_n for n = 0, 1, 2, 3.
 - (ii) Explain why

$$\frac{d^m}{dx^m}(1-x)^n(1+x)^n$$

vanishes at x = 1 or x = -1 whenever m < n.

Suppose that

$$P_n(x) = \frac{d^n}{dx^n} (1 - x^2)^n.$$

Use integration by parts to show that

$$\int_{-1}^{1} P_n(x) P_m(x) \, dx = 0$$

for $m \neq n$. Conclude that the P_n are scalar multiple of the Legendre polynomials p_n .

- (iii) Compute P_n for n = 0, 1, 2, 3 and check that these verify the last sentence of (ii).
- **12.** If $f \in C[0,1]$ and $\int_0^1 f(x)x^n dx = 0$, for all n = 0, 1, 2, ..., prove that f is the zero function. If we only assume that $f \in C[0,1]$ and $\int_0^1 f(x)x^n dx = 0$, for all n = 1, 2, ..., does it still follow that f is the zero function?
- ⁺13. The Chebyshev polynomials form an orthogonal system with respect to a certain positive weight function w. That is, $\int_{-1}^{1} T_m(x) T_n(x) w(x) dx = 0$ whenever $m \neq n$. Work out what the weight function should be, and prove the orthogonality. [Hint: use an appropriate substitution for x.]