$\|\cdot\|$ denotes the uniform norm on C([0,1]).

1. Let $f : [0,1] \to \mathbf{R}$ be a continuous function with the property that $\int_0^1 f(x)x^n dx = 0$ for $n = 0, 1, 2, \ldots$ Prove that f is identically zero.

2. Suppose that $f : [0, 1] \to \mathbf{R}$ is uniformly approximated by polynomials, but is not itself a polynomial. Show that the degrees of these approximating polynomials tend to infinity.

3. Suppose that $f : [0,1] \to \mathbf{R}$ is continuous. Let $n \ge 1$ be an integer. Show that there is a unique polynomial p of degree at most n for which $||f - p||_2 = (\int_0^1 |f(x) - p(x)|^2 dx)^{1/2}$ is minimal.

4. A metric space X is called *separable* if it has a countable dense subset S (thus every ball $B_{\varepsilon}(x)$ in X contains some point of S). Show that the space C([0, 1]) of continuous functions on [0, 1] is separable.

5. Prove the following extension of the Weierstrass approximation theorem. Given $\varepsilon > 0$, a continuous function $f : [0, 1] \to \mathbf{R}$, and points $x_1, \ldots, x_m \in [0, 1]$, there is a polynomial p such that $||f - p|| \leq \varepsilon$ and $f(x_i) = p(x_i)$ for all i.

6. Let $f:[0,\pi] \to \mathbf{R}$ be a continuous function with $f(0) = f(\pi)$. Show that f can be uniformly approximated by trigonometric polynomials of the form $\sum_{n \in \mathbf{Z}} a_n \cos nx$. Now suppose that $f:[0,2\pi] \to \mathbf{R}$ is a continuous function with $f(0) = f(2\pi)$. Show that f can be uniformly approximated by trigonometric polynomials of the form $\sum_n a_n \cos nx + \sum_n b_n \sin nx$.

7. Suppose that $f: [0,1] \to \mathbf{R}$ satisfies the Lipschitz property $|f(x) - f(y)| \leq |x-y|$. Show that there is a polynomial p of degree at most $10/\varepsilon^3$ such that $||f-p|| \leq \varepsilon$.

8. Prove that every continuous function $f : [0,1] \times [0,1] \rightarrow \mathbf{R}$ can be uniformly approximated by polynomials in two variables.

9. Suppose that p is a polynomial of degree n with complex coefficients. If $|p(x)| \leq 1$ for all real x such that $|x| \leq 1$, show that every coefficient of p has magnitude at most $(10n)^n$. If $|p(z)| \leq 1$ for all complex z such that $|z| \leq 1$, show that every coefficient of p has magnitude at most 1.

10. The aim of this exercise is to give what I believe to be some kind of approximation to Weierstrass's original proof of the approximation theorem. Suppose that $f : \mathbf{R} \to \mathbf{R}$ is continuous, and vanishes outside of some bounded interval.

- (1) Define $K_n(x) = \sigma_n e^{-nx^2}$, where σ_n is chosen so that $\int_{-1}^1 K_n(x) dx = 1$. Show that $\sigma_n \leq C\sqrt{n}$ for some absolute constant C, and give a sketch of the functions K_n .
- (2) Let $\delta > 0$. Show that $\int_{|t| \ge \delta} K_n(t) dt \to 0$ as $n \to \infty$.
- (3) Consider the convolution $f * K_n(x) = \int_{\mathbf{R}} f(x-t)K_n(t)dt$. Show that $f * K_n \to f$ uniformly on any bounded interval. (Hint: look again at the argument given in lectures, and use the previous part of the question.)
- (4) Show that if K is a polynomial, then so is f * K.
- (5) Show that for each fixed n and bounded interval I, K_n may be uniformly approximated by polynomials on I.
- (6) Deduce the Weierstrass approximation theorem.

11. The aim of this exercise is to prove the following theorem: if $p(z) = a_0 + a_1 z + \cdots + a_n z^n$ is a complex polynomial of degree n with $|a_i| = 1$ for all i then the multiplicity of 1 as a root of p is no more than $C\sqrt{n}$ for some constant C.

- (1) Consider first the polynomial $f(z) = \frac{1}{2}T_0(z) + T_1(z) + \cdots + T_k(z)$, where the T_i are the Chebyshev polynomials. Prove that $|f(z)| \leq (2(1-z))^{-1/2}$ for $z \in [-1, 1)$, and that $f(1) = k + \frac{1}{2}$.
- (2) Now define $g(z) = (f(1 \frac{2z}{n})^4)$. Show that $|g(1)| + \dots + |g(n)| < g(0)$ if $k > 10\sqrt{n}$.
- (3) Show that if p had a zero of order 4k + 1 at 1 then we would have $a_0g(0) + \cdots + a_ng(n) = 0$, and hence deduce the theorem.

12. Suppose we are given four distinct points A, B, C, D on the unit circle (thought of as a subset of \mathbb{R}^2), in that order. Suppose that γ is a continuous path from A to C, and that γ' is a continuous path from B to D, and that both of these paths lie inside the closed unit disc. Show that they meet.

13. Suppose that $f : [0,1] \to \mathbf{R}$ is continuous. Let $n \ge 1$ be an integer. Show that there is a unique polynomial p of degree at most n for which $||f - p||_1 = \int_0^1 |f(x) - p(x)|dx$ is minimal. (Hints: suppose that F is a continuous function with finitely many zeros which is n-unimprovable in the sense that $||F + p||_1 \ge ||F||_1$ for all p of degree at most n. Show that there cannot be a polynomial q of degree at most n + 1 crossing zeros in (0, 1), and then finish as in lectures).

b.j.green@dpmms.cam.ac.uk