
Topics in Analysis: Example Sheet 2

Michaelmas 2011-12 N. Wickramasekera

(1) Does there exist a function f : [0, 1] → R with a discontinuity which can be approximated
uniformly on [0, 1] by polynomials?

(2) Let f : [0, 1] → R be a continuous function which is not a polynomial. If pn is a sequence of
polynomials converging uniformly to f on [0, 1], and dn = degree of pn, prove that dn →∞.

(3) Use the mean value theorem to prove that if P is a real polynomial of degree at most n which
vanishes at (n + 1) distinct real numbers, then P is identically zero.

(4) Suppose f : [−1, 1] → R is (n + 1)-times continuously differentiable on [−1, 1] and let Jn =
{x0, x1, . . . , xn} be a set of (n+1) distinct points in [−1, 1]. Let PJn be the interpolating polynomial
of degree ≤ n determined by the requirement PJn(xj) = f(xj) for each j = 0, 1, 2, . . . , n. Let
βJn(x) = (x−x0)(x−x1)(x−x2) . . . (x−xn). Prove that for each x ∈ [−1, 1], there exists ζ ∈ (−1, 1)
such that

f(x)− PJn(x) =
f (n+1)(ζ)
(n + 1)!

βJn(x).

(Hint: If x = xj this holds trivially. If not, consider g(y) = f(y) − PJn(y) − λβJn(y) where λ is
chosen so that g(x) = 0.)

Deduce that if f is infinitely differentiable in [−1, 1] and supx∈[−1,1] |f (n)(x)| ≤ Mn for some fixed
constant M and all n = 1, 2, 3, . . . , then the interpolating polynomials PJn (for arbitrary choices of
sets of interpolation points Jn = {x(n)

0 , . . . , x
(n)
n } ⊂ [−1, 1]) converge uniformly to f on [−1, 1] as

n →∞.

(5) Fix n ≥ 1 and let J be any set of n distinct pints {x1, . . . , xn} ⊂ [−1, 1]. Let βJ be the
polynomial defined by βJ(x) = (x− x1)(x− x2) . . . (x− xn) and set

F (x1, . . . , xn) = sup
x∈[−1,1]

|βJ(x)|.

By considering the nth Chebychev polynomial or otherwise, prove that F is minimized when
xk = cos

(
(2k−1)π

2n

)
for k = 1, 2, . . . , n.

(6) It can be shown that the converse of the equal ripple criterion holds. That is to say, if
f ∈ C([0, 1]) and p is a polynomial of degree at most n which minimizes ‖f−q‖∞ = supx∈[0,1] |f(x)−
q(x)| among all polynomials q of degree at most n, then there exist (n + 2) distinct points
0 ≤ x1 < x2 < . . . < xn+2 ≤ 1 such that either f(xj) − p(xj) = (−1)j‖f − p‖∞ for all
j = 1, 2, . . . , n + 2 or f(xj) − p(xj) = (−1)j+1‖f − p‖∞ for all j = 1, 2, . . . , n + 2. Assuming
this, prove that for any given f ∈ C([0, 1]) and each positive integer n, the minimizer of ‖f − q‖∞
among all polynomials q of degree at most n is unique. (Recall that the existence of such a mini-
mizer was proved in lecture.)

(7) Determine all linear operators L : C([0, 1]) → C([0, 1]) which satisfy (i) Lf ≥ 0 for all non-
negative f ∈ C([0, 1]) and (ii) Lf = f for the three functions f(x) = 1, x, x2.
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(8) If f : R → R is continuous, show that there exist polynomials pn, n = 1, 2, . . . , such that
pn(x) → f(x) for every x ∈ R.

(9) Let Bn : C([0, 1]) → C([0, 1]) be the Bernstein operator defined by

Bnf(x) =
n∑

k=0

f

(
k

n

) (
n
k

)
xk(1− x)n−k.

Show directly that Bn f → f uniformly on [0, 1] for the function f(x) = x3.

(10) Give a proof of the Weierstrass approximation theorem by completing the following argument:
Let 0 < a < b < 1, and f : [a, b] → R be the continuous function we wish to approximate
uniformly on [a, b] by polynomials. Fix any continuous extension of f to all of R such that the
extended function is identical to zero outside [0, 1], and denote it again by f. Let M = sup |f |.

(a) For each δ ∈ (0, 1/2) and each n = 1, 2, 3, . . . , set In =
∫ 1
0 (1− t2)n dt and In,δ =

∫ 1
δ (1− t2)n dt.

Show that In > (1 + n)−1 and In,δ < (1 − δ2)n. Thus, for any fixed δ ∈ (0, 1/2), In,δ/In → 0 as
n →∞.

(b) Choose numbers a1, b1 such that 0 < a1 < a < b < b1 < 1, and set, for x ∈ R and n = 1, 2, 3, . . . ,

p̃n(x) =
∫ b1

a1

f(y)(1− (y − x)2)n dy.

Given any ε > 0, there exists δ > 0 such that |f(x + t) − f(x)| < ε for |t| < δ and any x. Why?
Use this fact and a change of variables in the integral above to show that for x ∈ [a, b],

p̃n(x) = 2f(x)(In − In,δ) + Rn(x)

where |Rn(x)| ≤ 2εIn + 2MIn,δ.

(c) Set pn = (2In)−1p̃n. Check that pn is a polynomial of degree ≤ 2n, and that supx∈[a,b] |pn(x)−
f(x)| < 2ε for all sufficiently large n.

(11) Calculate the first five Chebychev polynomials.

(12) Calculate the first four Legendre polynomials. Do it both using the formula and using orthog-
onality and check that your answers agree.

(13) If f ∈ C([0, 1]) and
∫ 1
0 f(x)xn dx = 0 for all n = 0, 1, 2 . . ., prove that f is the zero function.

If we only assume that f ∈ C([0, 1]) and
∫ 1
0 f(x)xn dx = 0 for all n = 1, 2, . . ., does it still follow

that f is the zero function?

(14) Let a, b ∈ R with a < b and let n be an integer ≥ 1. Give an explicit expression, in terms of
an appropriate Chebychev polynomial, for the polynomial p of degree ≤ n− 1 satisfying

sup
x∈[a,b]

|xn − p(x)| ≤ sup
x∈[a,b]

|xn − q(x)|

for all polynomials q of degree ≤ n− 1.
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