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(1) Let f : C → C be a continuous function. If there is a positive integer n and a non-zero complex
number c such that

lim
z→∞

z−nf(z) = c,

prove that f(z0) = 0 for some z0 ∈ C.

(2) Let γ : [0, 1] → C \ {0} be a continuous map such that γ(0) = γ(1) and suppose that for each
t ∈ [0, 1], γ(t) is not equal to a negative real number. By considering γ(t) + c for suitable values of
c ∈ [0,∞), or otherwise, show that the winding number w(γ; 0) = 0.

(3) Let g : S1 → S1 be a continuous map, where S1 = {z ∈ C : |z| = 1}. If there is a continuous
extension of g to the closed unit disk D = {z ∈ C : |z| ≤ 1} (i.e. if there is a continuous map
G : D → S1 such that G(z) = g(z) for each z ∈ S1), prove that

(a) g(z) = z for some z ∈ S1.

(b) g(z) = −z for some z ∈ S1.

(4) Let f : [1,∞) → R be a continuous function and suppose that for each x ∈ [1,∞), f(nx) → 0
as n → ∞, n ∈ N. Prove that limx→∞ f(x) = 0. (Hint: For ǫ > 0, consider the sets Qk = {x ∈
[1,∞) : |f(nx)| < ǫ ∀n ≥ k}.)

(5) Let K be a non-empty compact, connected subset of the complex plane. Let f be a complex
function on K which is analytic in some open set containing K. Prove that either f is a polynomial
on K or the nth derivative f (n)(z) 6= 0 for some z ∈ K and all n = 1, 2, 3, . . . .

(6) Let Aj be a sequence of subsets of [0, 1] such that for each N ≥ 1, ∪∞
j=N Aj is open and dense

in [0, 1]. Prove that the set S of points x ∈ [0, 1] such that x ∈ Aj for infinitely many j is dense.
Must S be open? Must it be true that ∩∞

j=1Aj 6= ∅?

(7) If G is an open dense subset of R, and Q is the set of rationals, show that G\Q must be dense
in R. If we only assume G is uncountable and dense in R, does it still follow that G\Q is dense in R?

(8) Prove that
√

2 +
√

3 and cosh 1 are irrational.

(9) By considering the numbers
∑∞

n=0
bn

10n! with bn ∈ {1, 2}, give a (second) proof that the set of
real transcendental numbers is uncountable.

(10) Determine the continued fraction expansions of 71/49 and
√

3. Deduce that
√

3 is irrational.

(11) Let a, b be positive integers. Let

x =
1

a + 1
b+ 1

a+ 1
b+...

.
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(a) Show that x solves ax2 + abx − b = 0.

(b) Assume a = b = 1. Show that, in this case, x = −1+
√

5
2 and that if pn

qn
is the nth convergent

of the continued fraction, then pn = Fn, qn = Fn+1, where F0, F1, F2, . . . is the Fibonacci sequence
defined by F0 = 0, F1 = 1 and Fn+1 = Fn + Fn−1.

(c) Show that Fn+1Fn−1 − F 2
n = (−1)n+1.

(12) Let p be a positive integer and α, β be real numbers such that α + β = αβ = −p. Find the
simple continued fraction representations of |α| and |β| in terms of p.

(13) Determine the rational number with denominator ≤ 10 that best approximates 71/49.

(14) Use continued fractions to show that for any irrational α, there are infinitely many rationals

p/q such that
∣

∣

∣
α − p

q

∣

∣

∣
< 1

q2 . Compare this with Liouville’s theorem on irrational algebraic numbers.

(15) (a) For sequences of real numbers {an} and {bn}, consider

F = a0 +
b0

a1 + b1

a2+
b2

a3+...

.

Assuming at no stage we divide by zero and letting pn/qn be the nth convergent of this, derive, for
appropriate choices of pn, qn, the relation

(

pn+1 pn

qn+1 qn

)

=

(

pn pn−1

qn qn−1

)(

an+1 1
bn 0

)

and deduce that pn+1 = an+1pn +bnpn−1, qn+1 = an+1qn +bnqn−1 for n ≥ 1, where p0 = a0, q0 = 1,
p1 = a0a1 + b0 and q1 = a1.

(b) Use (a) to show that for |x| ≤ 1,

tan x =
x

1 − x2

3− x2

5− x2

7−...

.

(Hint: Let sn(x) = 1
2nn!

∫ x

0 (x2 − t2) cos t dt and first prove the following two facts: (i) sn(x) =
qn(x) sin x−pn(x) cos x where pn, qn are the polynomials defined by p0(x) = 0, p1(x) = x, q0(x) = 1,
q1(x) = 1 and the relations pn(x) = (2n−1)pn−1(x)−x2pn−2(x), qn(x) = (2n−1)qn−1(x)−x2qn−2(x)
for n ≥ 2, (ii) qn+1(x) ≥ qn(x) and qn(x) ≥ n! for |x| ≤ 1 and n = 0, 1, 2, . . .)

(c) Deduce that
e + 1

e − 1
= 2 +

1

6 + 1
10+ 1

14+...

.
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