Topics in Analysis: Example Sheet 2

MICHAELMAS 2010-11

N. Wickramasekera

(1) Does there exist a function $f:[0,1]\to \mathbf{R}$ with a discontinuity which can be approximated uniformly on [0,1] by polynomials?

(2) Let $f:[0,1] \to \mathbf{R}$ be a continuous function which is not a polynomial. If p_n is a sequence of polynomials converging uniformly to f on [0,1], and $d_n = \text{degree}$ of p_n , prove that $d_n \to \infty$.

(3) Use the mean value theorem to prove that if P is a real polynomial of degree at most n which vanishes at (n+1) distinct real numbers, then P is identically zero.

(4) Suppose $f: [-1,1] \to \mathbf{R}$ is (n+1)-times continuously differentiable on [-1,1] and let $J_n = \{x_0, x_1, \ldots, x_n\}$ be a set of (n+1) distinct points in [-1,1]. Let P_{J_n} be the interpolating polynomial of degree $\leq n$ determined by the requirement $P_{J_n}(x_j) = f(x_j)$ for each $j = 0, 1, 2, \ldots, n$. Let $\beta_{J_n}(x) = (x-x_0)(x-x_1)(x-x_2)\ldots(x-x_n)$. Prove that for each $x \in [-1,1]$, there exists $\zeta \in (-1,1)$ such that

$$f(x) - P_{J_n}(x) = \frac{f^{(n+1)}(\zeta)}{(n+1)!} \beta_{J_n}(x).$$

(Hint: If $x = x_j$ this holds trivially. If not, consider $g(y) = f(y) - P_{J_n}(y) - \lambda \beta_{J_n}(y)$ where λ is chosen so that g(x) = 0.)

Deduce that if f is infinitely differentiable in [-1,1] and $\sup_{x\in[-1,1]}|f^{(n)}(x)|\leq M^n$ for some fixed constant M and all $n=1,2,3,\ldots$, then the interpolating polynomials P_{J_n} (for arbitrary choices of sets of interpolation points $J_n=\{x_0^{(n)},\ldots,x_n^{(n)}\}\subset[-1,1]$) converge uniformly to f on [-1,1] as $n\to\infty$.

(5) Fix $n \ge 1$ and let J be any set of n distinct pints $\{x_1, \ldots, x_n\} \subset [-1, 1]$. Let β_J be the polynomial defined by $\beta_J(x) = (x - x_1)(x - x_2) \ldots (x - x_n)$ and set

$$F(x_1,...,x_n) = \sup_{x \in [-1,1]} |\beta_J(x)|.$$

By considering the *n*th Chebychev polynomial or otherwise, prove that F is minimized when $x_k = \cos\left(\frac{(2k-1)\pi}{2n}\right)$ for $k = 1, 2, \dots, n$.

(6) It can be shown that the converse of the equal ripple criterion holds. That is to say, if $f \in C([0,1])$ and p is a polynomial of degree at most n which minimizes $||f-q||_{\infty} = \sup_{x \in [0,1]} |f(x)-q(x)|$ among all polynomials q of degree at most n, then there exist (n+2) distinct points $0 \le x_1 < x_2 < \ldots < x_{n+2} \le 1$ such that either $f(x_j) - p(x_j) = (-1)^j ||f-p||_{\infty}$ for all $j = 1, 2, \ldots, n+2$ or $f(x_j) - p(x_j) = (-1)^{j+1} ||f-p||_{\infty}$ for all $j = 1, 2, \ldots, n+2$. Assuming this, prove that for any given $f \in C([0,1])$ and each positive integer n, the minimizer of $||f-q||_{\infty}$ among all polynomials q of degree at most n is unique. (Recall that the existence of such a minimizer was proved in lecture.)

(7) Determine all linear operators $L: C([0,1]) \to C([0,1])$ which satisfy (i) $Lf \ge 0$ for all non-negative $f \in C([0,1])$ and (ii) Lf = f for the three functions $f(x) = 1, x, x^2$.

- (8) If $f: \mathbf{R} \to \mathbf{R}$ is continuous, show that there exist polynomials $p_n, n = 1, 2, \ldots$, such that $p_n(x) \to f(x)$ for every $x \in \mathbf{R}$.
- (9) Let $B_n: C([0,1]) \to C([0,1])$ be the Bernstein operator defined by

$$B_n f(x) = \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k}.$$

Show directly that $B_n f \to f$ uniformly on [0,1] for the function $f(x) = x^3$.

- (10) Give a proof of the Weierstrass approximation theorem by completing the following argument: Let 0 < a < b < 1, and $f : [a,b] \to \mathbf{R}$ be the continuous function we wish to approximate uniformly on [a,b] by polynomials. Fix any continuous extension of f to all of \mathbf{R} such that the extended function is identical to zero outside [0,1], and denote it again by f.
- (a) For each $\delta \in (0, 1/2)$ and each n = 1, 2, 3, ..., set $I_n = \int_0^1 (1 t^2)^n dt$ and $I_{n,\delta} = \int_{\delta}^1 (1 t^2)^n dt$. Show that $I_n > (1 + n)^{-1}$ and $I_{n,\delta} < (1 \delta^2)^n$. Thus, for any fixed $\delta \in (0, 1/2)$, $I_{n,\delta}/I_n \to 0$ as $n \to \infty$.
- (b) Choose numbers a_1, b_1 such that $0 < a_1 < a < b < b_1 < 1$, and set, for $x \in \mathbf{R}$ and $n = 1, 2, 3, \ldots$,

$$\widetilde{p}_n(x) = \int_{a_1}^{b_1} f(y) (1 - (y - x)^2)^n \, dy.$$

Given any $\epsilon > 0$, there exists $\delta > 0$ such that $|f(x+t) - f(x)| < \epsilon$ for $|t| < \delta$ and any x. Why? Use this fact and a change of variables in the integral above to show that for $x \in [a, b]$,

$$\widetilde{p}_n(x) = 2f(x)(I_n - I_{n,\delta}) + R_n(x)$$

where $|R_n(x)| \leq 2\epsilon I_n + 2MI_{n,\delta}$.

- (c) Set $p_n = (2I_n)^{-1}\widetilde{p}_n$. Check that p_n is a polynomial of degree $\leq 2n$, and that $\sup_{x \in [a,b]} |p_n(x) f(x)| < 2\epsilon$ for all sufficiently large n.
- (11) Calculate the first five Chebychev polynomials.
- (12) Calculate the first four Legendre polynomials. Do it both using the formula and using orthogonality and check that your answers agree.
- (13) If $f \in C([0,1])$ and $\int_0^1 f(x)x^n dx = 0$ for all n = 0, 1, 2, ..., prove that f is the zero function. If we only assume that $f \in C([0,1])$ and $\int_0^1 f(x)x^n dx = 0$ for all n = 1, 2, ..., does it still follow that f is the zero function?
- (14) Let $a, b \in \mathbf{R}$ with a < b and let n be an integer ≥ 1 . Give an explicit expression, in terms of an appropriate Chebychev polynomial, for the polynomial p of degree $\leq n-1$ satisfying

$$\sup_{x \in [a,b]} |x^n - p(x)| \le \sup_{x \in [a,b]} |x^n - q(x)|$$

for all polynomials q of degree $\leq n-1$.