Topics in Analysis: Example Sheet 4

MICHAELMAS 2009-10

N. WICKRAMASEKERA

(1) Determine the continued fraction expansions of 71/49 and $\sqrt{3}$. Deduce that $\sqrt{3}$ is irrational.

(2) Show that the simple continued fraction representing an irrational number α is uniquely determined by α .

(3) Let a, b be positive integers. Let

$$x = \frac{1}{a + \frac{1}{b + \frac{1}{a + \frac{1}{b + \dots}}}}.$$

(a) Show that x solves $ax^2 + abx - b = 0$.

(b) Assume a = b = 1. Show that, in this case, $x = \frac{-1+\sqrt{5}}{2}$ and that if $\frac{p_n}{q_n}$ is the *n*th convergent of the continued fraction, then $p_n = F_n$, $q_n = F_{n+1}$, where F_0, F_1, F_2, \ldots is the Fibonacci sequence defined by $F_0 = 0$, $F_1 = 1$ and $F_{n+1} = F_n + F_{n-1}$.

(c) Show that $F_{n+1}F_{n-1} - F_n^2 = (-1)^{n+1}$.

(4) Let p be a positive integer and α, β be real numbers such that $\alpha + \beta = \alpha\beta = -p$. Find the simple continued fraction representations of $|\alpha|$ and $|\beta|$ in terms of p.

(5) Determine the rational number with denominator ≤ 10 that best approximates 71/49.

(6) Recall that a topological space (X, τ) is said to be a T_1 space if for each pair x, y of distinct points of X, there exists an open set U such that $x \in U$ and $y \notin U$. Prove that the following are equivalent:

- (a) (X, τ) is a T_1 space.
- (b) $\{x\}$ is a closed subset of X for every point $x \in X$.
- (c) If A is any subset of X, then $A = \bigcap_{U \in \tau, A \subseteq U} U$.

(7) Let $f : [1, \infty) \to \mathbf{R}$ be a continuous function and suppose that for each $x \in [1, \infty)$, $f(nx) \to 0$ as $n \to \infty$, $n \in \mathbf{N}$. Prove that $\lim_{x\to\infty} f(x) = 0$. (Hint: For $\epsilon > 0$, consider the sets $Q_k = \{x \in [1, \infty) : |f(nx)| < \epsilon \quad \forall n \ge k\}$.)

(8) Is the set of irrationals, as a subset of \mathbf{R} , of second category?

(9) Let A_j be a sequence of subsets of [0, 1] such that for each $N \ge 1$, $\bigcup_{j=N}^{\infty} A_j$ is open and dense in [0, 1]. Prove that the set S of points $x \in [0, 1]$ such that $x \in A_j$ for infinitely many j is dense. Must S be open? Must it be true that $\bigcap_{i=1}^{\infty} A_i \neq \emptyset$? (10) If G is an open dense subset of **R**, and **Q** is the set of rationals, show that $G \setminus \mathbf{Q}$ must be dense in **R**. If we only assume G is uncountable and dense in **R**, does it still follow that $G \setminus \mathbf{Q}$ is dense in **R**?

(11) (Principle of Uniform Boundedness.) Let (X, d) be a complete metric space and let \mathcal{F} be a family of real valued continuous functions on X. Suppose for each $x \in X$, the set $\{f(x) : f \in \mathcal{F}\}$ is bounded. (i.e. for each $x \in X$, there exists a number $M_x \ge 0$, possibly depending on x, such that $|f(x)| \le M_x$ for each $f \in \mathcal{F}$.) Prove that there exists a ball $B_r(x_0) \subset X$ and a number $M \ge 0$ such that

$$|f(x)| \le M$$

for each $x \in B_r(x_0)$ and $f \in \mathcal{F}$.

(12) Let $f : \mathbf{C} \to \mathbf{C}$ be a continuous function. If there is a positive integer n and a non-zero complex number c such that

$$\lim_{z \to \infty} z^{-n} f(z) = c,$$

prove that $f(z_0) = 0$ for some $z_0 \in \mathbf{C}$.

(13) Let $\gamma : [0,1] \to \mathbb{C} \setminus \{0\}$ be a continuous map such that $\gamma(0) = \gamma(1)$ and suppose that for each $t \in [0,1], \gamma(t)$ is not equal to a negative real number. By considering $\gamma(t) + c$ for suitable values of $c \in [0,\infty)$, or otherwise, show that the winding number $w(\gamma;0) = 0$.

(14) Let $g : \mathbf{S}^1 \to \mathbf{S}^1$ be a continuous map, where $\mathbf{S}^1 = \{z \in \mathbf{C} : |z| = 1\}$. If there is a continuous extension of g to the closed unit disk $D = \{z \in \mathbf{C} : |z| \le 1\}$ (i.e. if there is a continuous map $G : D \to \mathbf{S}^1$ such that G(z) = g(z) for each $z \in \mathbf{S}^1$), prove that

(a)
$$g(z) = z$$
 for some $z \in \mathbf{S}^1$.

(b)
$$g(z) = -z$$
 for some $z \in \mathbf{S}^1$.

(15) (Optional.) (a) Let $f : [0,1] \to \mathbf{R}$ be a non-negative, bounded Riemann integrable function with $\int_0^1 f = 0$. If $E = \{x \in [0,1] : f(x) \neq 0\}$, prove that E is a set of Lebesgue measure zero.

(b) Let $f : [0,1] \to \mathbf{R}$ be a bounded Riemann integrable function. If

$$\int_0^1 f(x)x^n \, dx = 0 \quad \text{for} \ n = 0, 1, 2, \dots,$$

prove that f(x) = 0 except on a set of Lebesgue measure zero.