
Topics in Analysis: Example Sheet 2

Lent 2008-09 N. Wickramasekera

(1) Does there exist a function f : [0, 1] → R with a discontinuity which can be approximated
uniformly on [0, 1] by polynomials?

(2) Let f : [0, 1] → R be a continuous function which is not a polynomial. If pn is a sequence of
polynomials converging uniformly to f on [0, 1], and dn = degree of pn, prove that dn → ∞.

(3) Use the mean value theorem to prove that if P is a real polynomial of degree at most n which
vanishes at (n + 1) distinct real numbers, then P is identically zero.

(4) Suppose f : [−1, 1] → R is (n + 1)-times continuously differentiable on [−1, 1] and let Jn =
{xj ∈ [−1, 1] : j = 0, 1, 2, . . . , n} be a set of (n + 1) distinct points. Let PJn

be the interpolating
polynomial of degree ≤ n determined by the requirement PJn

(xj) = f(xj) for each j = 0, 1, 2, . . . , n.
Let βJn

(x) = (x − x0)(x − x1)(x − x2) . . . (x − xn). Prove that for each x ∈ [−1, 1], there exists
ζ ∈ (−1, 1) such that

f(x) − PJn
(x) =

f (n+1)(ζ)

(n + 1)!
βJn

(x).

(Hint: If x = xj this holds trivially. If not, consider g(y) = f(y) − PJn
(y) − λβJn

(y) where λ is
chosen so that g(x) = 0.)

Deduce that if f is infinitely differentiable in [−1, 1] and supx∈[−1,1] |f (n)(x)| ≤ Mn for some fixed
constant M and all n = 1, 2, 3, . . . , then the interpolating polynomials PJn

(for arbitrary choices of

sets of interpolation points Jn = {x(n)
0 , . . . , x

(n)
n } ⊂ [−1, 1]) converge uniformly to f on [−1, 1] as

n → ∞.

(5) Fix n ≥ 1 and let J be any set of n distinct pints {x1, . . . , xn} ⊂ [−1, 1]. Let βJ be the
polynomial defined by βJ(x) = (x − x1)(x − x2) . . . (x − xn) and set

F (x1, . . . , xn) = sup
x∈[−1,1]

|βJ(x)|.

By considering the nth Chebychev polynomial or otherwise, prove that F is minimized when

xk = cos
(

(2k−1)π
2n

)
for k = 1, 2, . . . , n.

(6) Recall that the converse of the equal ripple criterion holds. That is to say, if f ∈ C([0, 1]) and
p is a polynomial which minimizes ‖f − q‖∞ = supx∈[0,1] |f(x) − q(x)| among all polynomials q of
degree at most n, then there exist (n + 2) distinct points 0 ≤ x1 < x2 < . . . < xn+2 ≤ 1 such that
either f(xj) − p(xj) = (−1)j‖f − p‖∞ for all j = 1, 2, . . . or f(xj) − p(xj) = (−1)j+1‖f − p‖∞ for
all j = 1, 2, . . . . Assuming this, prove that for any given f ∈ C([0, 1]) and each positive integer n,
the minimizer of ‖f − q‖∞ among all polynomials q of degree at most n is unique.

(7) Determine all linear operators L : C([0, 1]) → C([0, 1]) which satisfy (i) Lf ≥ 0 for all non-
negative f ∈ C([0, 1]) and (ii) Lf = f for the three functions f(x) = 1, x, x2.
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(8) Let Bn : C([0, 1]) → C([0, 1]) be the Bernstein operator defined by

Bnf(x) =

n∑

k=0

f

(
k

n

) (
n
k

)
xk(1 − x)n−k.

Show directly that Bn f → f uniformly on [0, 1] for the function f(x) = x3.

(9) Give a proof of the Weierstrass approximation theorem by completing the following argument.
Let 0 < a < b < 1, and f : [a, b] → R be the continuous function we wish to approximate uniformly
on [a, b] by polynomials. Extend f to all of R as a continuous function such that the extended
function agrees with f on [a, b] and is identical to zero outside [0, 1]. Again call the extended func-
tion f , and let M = sup |f |.

(a) For each δ ∈ (0, 1/2) and each n = 1, 2, 3, . . . , set In =
∫ 1
0 (1− t2)n dt and In,δ =

∫ 1
δ
(1− t2)n dt.

Show that In > (1 + n)−1 and In,δ < (1 − δ2)n. Thus, for any fixed δ ∈ (0, 1/2), In,δ/In → 0 as
n → ∞.

(b) Choose numbers a1, b1 such that 0 < a1 < a < b < b1 < 1, and set, for x ∈ R and n = 1, 2, 3, . . . ,

p̃n(x) =

∫ b1

a1

f(y)(1 − (y − x)2)n dy.

Given any ǫ > 0, there exists δ > 0 such that |f(x + t) − f(x)| < ǫ for |t| < δ and any x. Why?
Use this fact and a change of variables in the integral above to show that for x ∈ [a, b],

p̃n(x) = 2f(x)(In − In,δ) + Rn(x)

where |Rn(x)| ≤ 2ǫIn + 2MIn,δ.

(c) Set pn = (2In)−1p̃n. Check that pn is a polynomial of degree ≤ 2n, and that supx∈[a,b] |pn(x)−
f(x)| < 2ǫ for all sufficiently large n.

(10) Calculate the first five Chebychev polynomials.

(11) Calculate the first four Legendre polynomials. Do it both using the formula and using orthog-
onality and check that your answers agree.

(12) Let Ω be a bounded, open subset of Rn and g : Ω × (a, b) → R be a function such that

(i) g(·, t) is bounded and continuous in Ω for each t ∈ (a, b) and

(ii) ∂ g
∂ t

(x, t), ∂2 g
∂t2

(x, t) exist for each x ∈ Ω and t ∈ (a, b), and |∂2 g
∂t2

(x, t)| ≤ M for some fixed
M ∈ (0,∞).

Let F (t) =
∫
Ω g(x, t) dx. Prove that F is differentiable in (a, b) and for each t ∈ (a, b),

F ′(t) =

∫

Ω

∂ g

∂ t
(x, t) dx.
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(13) For t ≥ 0 and x ∈ R define

g(x, t) =





x if 0 ≤ x ≤
√

t

−x + 2
√

t if
√

t ≤ x ≤ 2
√

t
0 otherwise

and let g(x, t) = −g(x,−t) if t < 0. Prove that g is continuous on R2 and that ∂ g
∂ t

(x, 0) = 0 for all

x. Let F (t) =
∫ 1
−1 g(x, t) dx. Prove that F (t) = t if |t| < 1/4. Thus F ′(0) 6=

∫ 1
−1

∂ g
∂ t

(x, 0) dx.

(14) If f ∈ C([0, 1]) and
∫ 1
0 f(x)xn dx = 0 for all n = 0, 1, 2 . . ., prove that f is the zero function.

If we assume that f ∈ C([0, 1]) and
∫ 1
0 f(x)xn dx = 0 for all n = 1, 2, . . ., does it still follow that

f is the zero function? If we only assume that f is bounded and Riemann integrable on [0, 1], and
that

∫ 1
0 f(x)xn = 0 for n = 1, 2, 3, . . ., does it still follow that f is the zero function? If not, can a

point x where f(x) 6= 0 be a point of continuity of f?

(15) Determine all continuous functions f : R → R having the property that
∫
∞

−∞
f(x)ϕ′′(x) dx = 0

for each smooth function ϕ : R → R vanishing outside some compact interval.
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