Topics in Analysis: Example Sheet 1

Lent 2008-09

N. WICKRAMASEKERA

(1) Let X be a subset of \mathbb{R}^n . If every continuous function $f : X \to \mathbb{R}$ is bounded, prove that X is compact.

(2) Consider the metric space (\mathbf{Q}, d) where \mathbf{Q} is the set of rational numbers and d is the usual Euclidean metric. Let P be the set of all $p \in \mathbf{Q}$ such that $2 < p^2 < 3$. Prove that P is closed and bounded in \mathbf{Q} , but not compact. Give an open cover of P which has no finite subcover.

(3) Find a metric d on X = (0, 1] such that (X, d) is a complete metric space, and such that a subset of X is open with respect to d if and only if it is open with respect to the usual Euclidean metric.

(4) Prove that the following statements are equivalent. (Note that this is the 1-dimensional version of the 2-dim theorem proved in lecture).

- (a) If $f : [-1,1] \to [-1,1]$ is continuous, then there exists a number $y \in [-1,1]$ such that f(y) = y.
- (b) There is no continuous function $g : [-1,1] \rightarrow \{-1,1\}$ with g(-1) = -1 and g(1) = 1.
- (c) If A and B are closed subsets of **R** such that $-1 \in A$, $1 \in B$ and $[-1,1] \subset A \cup B$, then $A \cap B \neq \emptyset$.
- (d) If $h : [-1,1] \to \mathbf{R}$ is continuous and c is a number between f(-1) and f(1), then there exists a number $x \in [-1,1]$ such that f(x) = c.

(5) Prove the statement (b) of problem (4) above by completing the following. (Note that this is the 1-dim version of the proof given in lecture for the 2-dim case, which was based on Green's theorem).

- (i) Show that if there is a continuous function $g : [-1,1] \to \{-1,1\}$ with g(-1) = -1 and g(1) = 1, then there is also a smooth function $\tilde{g} : \mathbf{R} \to \mathbf{R} \setminus \{0\}$ such that $\tilde{g}(x) = x$ for all x with $|x| \ge 1 \sigma$ for an appropriate choice of $\sigma \in (0, 1/2)$.
- (ii) Apply the fundamental theorem of calculus $G(1) G(-1) = \int_{-1}^{1} \frac{dG}{dt} dt$, with justification, to $G(t) = F(\tilde{g}(t))$ for an appropriate function $F : \mathbf{R} \setminus \{0\} \to \mathbf{R}$ to a get a contradiction.

(6) Let $f : B \to B$ be a continuous map from the *open* disc $B = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$ into itself. Does it follow that f has a fixed point? Does your answer change if f is a continuous bijection?

(7) Suppose that A is a 3×3 matrix with positive entries. By considering a suitable map from the triangle $T = \{\mathbf{x} \in \mathbf{R}^3 : x_1, x_2, x_3 \ge 0, x_1 + x_2 + x_3 = 1\}$ into itself, prove that A has an eigenvector with positive entries.

(8) Suppose (X, d) is a compact metric space and $f : X \to X$ is a continuous function such that $d(f(x), f(y)) \ge d(x, y)$ for all $x, y \in X$. Prove that f is a surjection. (Hint: if not show that there is a point $y \in X \setminus f(X)$ and r > 0 such that $B_r(y) \subset X \setminus f(X)$, and consider the sequence

 $y, f(y), f(f(y)), \ldots)$

(9) Recall that a function $f : X \to Y$ between metric spaces is uniformly continuous if for every $\epsilon > 0$, there exists a $\delta > 0$ such that $x, y \in X$, $d_X(x, y) < \delta \implies d_Y(f(x), f(y)) < \epsilon$. If (X, d_X) is compact, prove that every continuous function $f : X \to Y$ is uniformly continuous. Give in fact two proofs; a direct proof using the definition of compactness involving open covers, and another proof by contradiction using sequential compactness.

(10) Suppose $f : \mathbf{R} \to \mathbf{R}$ has the intermediate value property that if $a, b \in \mathbf{R}$, f(a) < c < f(b), then f(y) = c for some y between a and b.

- (i) Show that f need not be continuous.
- (ii) If additionally f has the property that $f^{-1}(\{a\})$ is closed for every a in a dense subset of \mathbf{R} , show that f is continuous.

(11) Let D be the closed unit disc in \mathbf{R}^2 , $x_0 \in D$ and suppose that $f : D \to D$ is a continuous function such that $f(x_0) \neq x_0$.

- (i) Show that there is r > 0 such that $f(x) \neq x$ for all $x \in B_r(x_0)$.
- (ii) For $x \in B_r(x_0)$, define g(x) to be the point where ∂D meets the ray obtained by extending the line segment connecting f(x) to x in the direction from f(x) to x. Prove that $g : B_r(x_0) \to \partial D$ is continuous at x_0 .

(Hint: note that any point on the ray in question can be written as $f(x) + \tau(x - f(x))$ for some $\tau \ge 0$, and for each $x \in D$, the requirement that this point belongs to ∂D determines uniquely a non-negative $\tau = \tau(x)$.)

(12) Let q be an integer ≥ 2 and n an integer ≥ 1 . Denote by \mathcal{Q} the set of all unordered q-tuples of points in \mathbb{R}^n . Thus $\mathcal{Q} = \{\{x_1, x_2, \ldots, x_q\} : x_1, x_2, \ldots, x_q \text{ are not necessarily distinct points } \in \mathbb{R}^n\}$. Define a function $\mathcal{G} : \mathcal{Q} \times \mathcal{Q} \to \mathbb{R}$ by

$$\mathcal{G} (\{x_1, x_2, \dots, x_q\}, \{y_1, y_2, \dots, y_q\}) = \\ \inf \left\{ \left(\sum_{j=1}^q |x_j - x_{\sigma(j)}|^2 \right)^{1/2} : \sigma \text{ is a permutation of } 1, 2, \dots, q \right\}.$$

(a) Show that \mathcal{G} is a metric on \mathcal{Q} .

(b) Assume n = 1. Note that in this case, we may, for any point $x = \{x_1, x_2, \ldots, x_q\} \in \mathcal{Q}$, choose the labeling so that $x_1 \leq x_2 \leq \ldots \leq x_q$. Assuming we have done this for all points in \mathcal{Q} , is it true that $\mathcal{G}(\{x_1, x_2, \ldots, x_q\}, \{y_1, y_2, \ldots, y_q\}) = \left(\sum_{j=1}^q (x_j - y_j)^2\right)^{1/2}$?