Topics in Analysis: Example Sheet 4

Lent 2007-08 N. Wickramasekera

(1) Determine the continued fraction expansions of 71/49 and $\sqrt{3}$. Deduce that $\sqrt{3}$ is irrational.

(2) Let α be a positive number having the continued fraction expansion

$$\alpha = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 \dots}}}$$

where a_0, a_1, a_2, \ldots are integers. Prove that the nth convergent

$$\frac{p_n}{q_n} = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots + \frac{1}{a_n}}}}$$

of this expansion is closer to α than any other rational number with denominator $\leq q_n$. That is to say,

$$\left|\alpha - \frac{p_n}{q_n}\right| \le \left|\alpha - \frac{p}{q}\right|$$

whenever p and q are integers with $1 \le q \le q_n$.

(3) Determine the rational number with denominator ≤ 10 that best approximates 71/49.

(4) Let a_j , b_j be positive integers for j = 0, 1, 2, ..., and set

$$\frac{p_n}{q_n} = a_0 + \frac{b_0}{a_1 + \frac{b_1}{a_2 + \frac{b_1}{a_3 + \dots + \frac{b_n}{a_{n-1} + \frac{b_n-1}{a_n}}}}}$$

for n=1,2,3,... Prove that for appropriate choices of integers p_n, q_n we have for n=1,2,3,... that

$$\begin{pmatrix} p_{n+1} & p_n \\ q_{n+1} & q_n \end{pmatrix} = \begin{pmatrix} a_0 & b_0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_1 & b_1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} a_n & b_n \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_{n+1} & 1 \\ 1 & 0 \end{pmatrix}$$

and deduce that

$$p_{n+1} = a_{n+1}p_n + b_n p_{n-1},$$

$$q_{n+1} = a_{n+1}q_n + b_n q_{n-1}.$$

(5) Let $f:[1,\infty)\to \mathbf{R}$ be a continuous function and suppose that for each $x\in[1,\infty)$, $f(nx)\to 0$ as $n\to\infty$, $n\in\mathbf{N}$. Prove that $\lim_{x\to\infty}f(x)=0$. Hint: For $\epsilon>0$, consider the sets $Q_k=\{x\in[1,\infty):|f(nx)|<\epsilon\quad\forall n\geq k\}$.

(6) Is the set of irrationals, as a subset of \mathbf{R} , of second category?

(7) Does there exist a sequence of continuous functions $f_n : \mathbf{R} \to \mathbf{R}$ such that the set $\{f_n(x)\}$ is bounded for each irrational x and unbounded for each rational x?

- (8) Let A_j be a sequence of subsets of [0,1] such that for each $N \ge 1$, $\bigcup_{j=N}^{\infty} A_j$ is open and dense in [0,1]. Prove that the set S of points $x \in [0,1]$ such that $x \in A_j$ for infinitely many j is dense. Must S be open? Must it be true that $\bigcap_{i=1}^{\infty} A_i \neq \emptyset$?
- (9) Let X and Y be topological spaces and let $f: X \to Y$. If $x \in X$, we say that f is continuous at x if for every open set V of Y containing f(x), there exists an open set U of X containing x such that $f(U) \subseteq V$. Prove that f is continuous if and only of f is continuous at every $x \in X$.
- (10) (Another problem on the Weierstrass approximation theorem). (a) If $f:(0,1)\to \mathbf{R}$ is continuous, prove that there exists a sequence of polynomials P_n such that $P_n\to f$ uniformly on compact subsets of (0,1).
- (b) If $f:(0,1)\to \mathbf{R}$ is continuous and bounded, prove that there exists a sequence of polynomials Q_n such that Q_n are uniformly bounded and $Q_n\to f$ uniformly on compact subsets of (0,1).

Some problems on the non-examinable material.

- (1) Let $u \in C^2(\mathbf{R}^2)$ satisfy $\Delta u = 0$ in \mathbf{R}^2 . If $u \equiv 0$ outside some ball $B_R(0)$, prove that $u \equiv 0$ everywhere.
- (2) Suppose Ω is a domain in ${\bf R}^2$ and u is a C^2 function on Ω which satisfies the mean value property

 $u(y) = \frac{1}{\pi R^2} \int_{B_R(y)} u$

for every ball $B_R(y)$ with $\overline{B_R(y)} \subset \Omega$. Prove that u is harmonic in Ω .

- (3) (a) If u is harmonic in \mathbb{R}^2 with |Du| bounded, prove that u must be an affine function.
- (b) Find all $C^2(\mathbf{R}^2)$ functions with |Du| bounded and Δu constant in \mathbf{R}^2 .
- (4) We say a C^2 function on a domain $\Omega \subset \mathbf{R}^2$ is subharmonic (resp. superharmonic) in Ω if $\Delta u \geq 0$ (resp. $\Delta u \leq 0$) in Ω . Generalize the strong maximum principle (proved in lecture for harmonic functions) as follows: A subharmonic (resp. superharmonic) function in Ω cannot attain a maximum (resp. minimum) value in Ω unless it is constant. (Hint: start by generalizing the mean value equality to appropriate mean value inequalities.)
- (5) Let D be the closed unit disk in \mathbf{R}^2 , $\Gamma \subset \mathbf{R}^3$ be a Jordan curve (i.e. a homeomorphic image of the unit circle in \mathbf{R}^2) and $M = \varphi_{\Gamma}(D)$ be the area minimizing surface given by the classical solution φ_{Γ} to the Plateau problem on D. If Γ is contained in a horizontal slab T (i.e. the region between two planes z = a and z = b), prove that $M \subset T$.
- (6) Let the D, Γ , M be as in problem (5), and B be a closed ball in \mathbb{R}^3 . Prove that if $\Gamma \subset \partial B$, then $M \subset B$. (Hint: use the maximum principle of problem (4) above.)