Topics in Analysis: Example Sheet 2

Lent 2007-08 N. Wickramasekera

- (1) Does there exist a function $f:[0,1]\to \mathbf{R}$ with a discontinuity which can be approximated uniformly on [0,1] by polynomials?
- (2) Let $f:[0,1] \to \mathbf{R}$ be a continuous function which is not a polynomial. If p_n is a sequence of polynomials converging uniformly to f on [0,1], and $d_n = \text{degree}$ of p_n , prove that $d_n \to \infty$.
- (3) Use the mean value theorem to prove that if P is a real polynomial of degree at most n which vanishes at (n+1) distinct real numbers, then P is identically zero.
- (4) Suppose $f: [-1,1] \to \mathbf{R}$ is (n+1)-times continuously differentiable on [-1,1] and let $J_n = \{x_j \in [-1,1] : j=0,1,2,\ldots,n\}$ be a set of (n+1) distinct points. Let P_{J_n} be the interpolating polynomial of degree $\leq n$ determined by the requirement $P_{J_n}(x_j) = f(x_j)$ for each $j=0,1,2,\ldots,n$. Let $\beta_{J_n}(x) = (x-x_0)(x-x_1)(x-x_2)\ldots(x-x_n)$. Prove that for each $x \in [-1,1]$, there exists $\zeta \in (-1,1)$ such that

$$f(x) - P_{J_n}(x) = \frac{f^{(n+1)}(\zeta)}{(n+1)!} \beta_{J_n}(x).$$

(Hint: If $x = x_j$ this holds trivially. If not, consider $g(y) = f(y) - P_{J_n}(y) - \lambda \beta_{J_n}(y)$ where λ is chosen so that g(x) = 0.)

Deduce that if f is infinitely differentiable in [-1,1] and $\sup_{x\in[-1,1]}|f^{(n)}(x)|\leq M^n$ for some fixed constant M and all $n=1,2,3,\ldots$, then the interpolating polynomials P_{J_n} (for arbitrary choices of sets of interpolation points $J_n=\{x_0^{(n)},\ldots,x_n^{(n)}\}\subset[-1,1]$) converge uniformly to f on [-1,1] as $n\to\infty$.

(5) Fix $n \ge 1$ and let J be any set of n distinct pints $\{x_1, \ldots, x_n\} \subset [-1, 1]$. Let β_J be the polynomial defined by $\beta_J(x) = (x - x_1)(x - x_2) \ldots (x - x_n)$ and set

$$F(x_1,...,x_n) = \sup_{x \in [-1,1]} |\beta_J(x)|.$$

By considering the *n*th Chebychev polynomial or otherwise, prove that F is minimized when $x_k = \cos\left(\frac{(2k-1)\pi}{2n}\right)$ for $k = 1, 2, \dots, n$.

(6) It can be shown that the converse of the equal ripple criterion holds. That is to say, if $f \in C([0,1])$ and p is a polynomial which minimizes $\|f-q\|_{\infty} = \sup_{x \in [0,1]} |f(x)-q(x)|$ among all polynomials q of degree at most n, then there exist (n+2) distinct points $0 \le x_0 < x_1 < x_2 < \ldots < x_{n+1} \le 1$ such that either $f(x_j) - p(x_j) = (-1)^j \|f-p\|_{\infty}$ for all $j = 0, 1, 2, \ldots$ or $f(x_j) - p(x_j) = (-1)^{j+1} \|f-p\|_{\infty}$ for all $j = 0, 1, 2, \ldots$ Assuming this, prove that for any given $f \in C([0,1])$ and each positive integer n, the minimizer of $\|f-q\|_{\infty}$ among all polynomials q of degree at most n is unique.

- (7) Determine all linear operators $L: C([0,1]) \to C([0,1])$ which satisfy (i) $Lf \ge 0$ for all nonnegative $f \in C([0,1])$ and (ii) Lf = f for the three functions $f(x) = 1, x, x^2$.
- (8) Let $B_n: C([0,1]) \to C([0,1])$ be the Bernstein operator defined by

$$B_n f(x) = \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k}.$$

Show directly that $B_n f \to f$ uniformly on [0,1] for the function $f(x) = x^3$.

- (9) If $f \in C([0,1])$ and $\int_0^1 f(x)x^n dx = 0$ for all $n = 0, 1, 2 \dots$, prove that f is the zero function. If we only assume that $f \in C([0,1])$ and $\int_0^1 f(x)x^n dx = 0$ for all $n = 1, 2, \dots$, does it still follow that f is the zero function? What if $f \in C([0,1])$ and $\int_0^1 f(x)x^n dx = 0$ for all even n? Odd n?
- (10) Calculate the first five Chebychev polynomials.
- (11) Calculate the first four Legendre polynomials. Do it both using the formula and using orthogonality and check that your answers agree.
- (12) The Chebychev polynomials form an orthogonal system with respect to a certain positive weight function w. That is, $\int_{-1}^{1} T_m(x) T_n(x) w(x) dx = 0$ if and only if $n \neq m$. Work out what w should be, and prove orthogonality. (Hint: use an appropriate substitution for x.)
- (13) Let E(0) = 0 and $E(x) = \exp(-1/x^2)$ for $x \neq 0$. Show that E is smooth everywhere in \mathbf{R} , the nth derivative $E^{(n)}(x) = P_n(1/x)E(x)$ for $x \neq 0$, where P_n is a polynomial, and $E^{(n)}(0) = 0$ for all $n = 1, 2, 3, \ldots$
- (14) Let Ω be a bounded, open subset of \mathbf{R}^n and $g: \Omega \times (a,b) \to \mathbf{R}$ be a function such that
 - (i) $g(\cdot,t)$ is bounded and continuous in Ω for each $t \in (a,b)$ and
- (ii) For each $x \in \Omega$ and $t \in (a,b)$, $\frac{\partial g}{\partial t}(x,t)$ and $\frac{\partial^2 g}{\partial t^2}(x,t)$ exist and are bounded and continuous as functions of $x \in \Omega$ for each fixed $t \in (a,b)$.

Let $F(t) = \int_{\Omega} g(x,t) dx$. Prove that F is differentiable in (a,b) and for each $t \in (a,b)$,

$$F'(t) = \int_{\Omega} \frac{\partial g}{\partial t}(x, t) dx.$$

(15) For $t \geq 0$ and $x \in \mathbf{R}$ define

$$g(x,t) = \begin{cases} x & \text{if } 0 \le x \le \sqrt{t} \\ -x + 2\sqrt{t} & \text{if } \sqrt{t} \le x \le 2\sqrt{t} \\ 0 & \text{otherwise} \end{cases}$$

and let g(x,t) = -g(x,-t) if t < 0. Prove that g is continuous on \mathbf{R}^2 and that $\frac{\partial g}{\partial t}(x,0) = 0$ for all x. Let $F(t) = \int_{-1}^{1} g(x,t) dx$. Prove that F(t) = t if |t| < 1/4. Thus $F'(0) \neq \int_{-1}^{1} \frac{\partial g}{\partial t}(x,0) dx$.

(16) Determine all continuous functions $f: \mathbf{R} \to \mathbf{R}$ having the property that $\int_{-\infty}^{\infty} f(x)\varphi''(x) dx = 0$ for each smooth function $\varphi: \mathbf{R} \to \mathbf{R}$ which is zero outside some compact interval.