General remark. Unless it is clearly inappropriate, you may quote from IA and IB.

- **1.** Let $f:[0,1] \to \mathbb{R}$ be a continuous function, let n be a positive integer and for $0 \le i \le n$ let $x_i = i/n$. Define a function $g_n:[0,1] \to \mathbb{R}$ by setting $g(x_i) = f(x_i)$ for each i, and making g linear on all the intervals $[x_{i-1},x_i]$. Show that the functions g_n converge uniformly to f.
- **2.** Let p(z) be the quadratic polynomial $z^2 4z + 3$ and let $f : [0,1] \to \mathbb{C}$ be the closed path $f(t) = p(2e^{2\pi it})$. (Thus, the image of f is the image of the restriction of p to the circle of radius 2 and centre 0.)
- (i) Calculate the winding number of f about 0 directly from the definition of winding number.
 - (ii) Can you give another proof that uses some of the results of the course?
- **3.** Let $f:[0,1] \to \mathbb{R}$ be defined by f(t)=0 if $t \le 1/2$ and f(t)=2t-1 if $1/2 \le t \le 1$. Find a polynomial p such that $|p(t)-f(t)| \le 1/5$ for every $t \in [0,1]$.
- **4.** It is clear that a function with a jump-discontinuity cannot be uniformly approximated by polynomials. However, that is not the only kind of discontinuity. True or false: no discontinuous function on [0,1] can be uniformly approximated by polynomials?
- **5.** Imitate the proof of the Weierstrass approximation theorem to prove that a continuous function $f:[0,1]^2 \to \mathbb{R}$ can be uniformly approximated by polynomials. [In the final version of this question I shall give an outline of how the proof should go, but it would be a good exercise to think about it without those hints first.]
- **6.** Let $f:[0,1]^2 \to \mathbb{R}$ such that f(x,y) is continuous in x for each fixed y and continuous in y for each fixed x. Does it follow that f is continuous?
- 7. Without looking at a book or at your old notes, prove that a continuous function from a compact metric space to \mathbb{R} is uniformly continuous. [Write out the definition of uniform continuity, negate it, use the negated definition to generate a pair of sequences (x_n) and (y_n) and apply sequential compactness.]
- **8.** Calculate the first five Chebyshev polynomials.
- **9.** Calculate the first four Legendre polynomials. Do it both from the formula and by using orthogonality and check that your answers agree.
- 10. The Chebyshev polynomials form an orthogonal system with respect to a certain positive weight function w. That is, $\int_{-1}^{1} T_m(x) T_n(x) w(x) dx = 0$ whenever $m \neq n$. Work out what the weight function should be, and prove the orthogonality. [Hint: use an appropriate substitution for x!]