
STATISTICAL MODELLING Part IIC / Michaelmas 2023
Example Sheet 3 (of 4)

1. Look at the cabbages data in the library(MASS) package (use ?cabbages to find out about the
dataset). Investigate whether the planting date has a significant effect on the weight of the cabbage
head. Write out the models you have fitted and explain any conclusions you come to.

2. Let Y ∈ R be a random variable, let K be its c.g.f. and let Θ = {θ : K(θ) < ∞}.

(a) Show that Θ is convex. Hint: Use the Hölder inequality.

(b) Suppose that Θ contains an open interval containing zero. Show that the first two cumulants
of Y are equal to E(Y ) and Var(Y ), respectively.

3. Let Y have a model function from an exponential dispersion family. Compute the cumulant gen-
erating function of Y and deduce expressions for the mean and variance of Y .

4. We say Y has the inverse Gaussian distribution with parameters ϕ and λ, and write Y ∼ IG(ϕ, λ),
if its density is

fY (y;ϕ, λ) =

√
λ√

2πy3/2
e
√
λϕ exp

{
−1

2

(λ
y
+ ϕy

)}
,

y ∈ (0,∞), λ ∈ (0,∞), ϕ ∈ (0,∞).

(a) Compute the cumulant generating function of Y , and hence find its mean and variance.

(b) Show that the family of inverse Gaussian densities above is an exponential dispersion family,
specifying the mean function µ, variance function V (µ), mean space M, the range for the
dispersion parameter Φ and the canonical link function. Hint: First find σ2 as a function of
ϕ and λ by guessing that σ2 is a function of λ alone.

5. Let Y be a random variable with density f(y; θ) for y ∈ Y ⊆ Rn and some θ ∈ Θ ⊆ Rd, and write
ℓ(θ) and U(θ) for the corresponding log-likelihood and score functions.

(a) Assume that the order of differentiation with respect to a component of θ and integration over
Y may be interchanged where necessary. Show that, for r, s = 1, . . . , d,

Covθ{Ur(θ), Us(θ)} = −Eθ

{ ∂2

∂θr∂θs
ℓ(θ)

}
.

(b) Suppose the components Yi of Y are i.i.d. and each Yi has density h(yi; θ). Let i
(n)(θ) be the

Fisher information of Y . Show that i(n)(θ) = ni(1)(θ).

6. Find the Fisher information for the parameters (β, σ2) in the normal linear model Y = Xβ + ε,
where ε ∼ Nn(0, σ

2I).

7. Let Y1, . . . , Yn be independent Poisson random variables with mean θ.

(a) Compute the maximum likelihood estimator θ̂n.

(b) By considering nθ̂n, write down the distribution of θ̂n and deduce its asymptotic distribution
directly. Verify that this asymptotic distribution agrees with that predicted by the general
asymptotic theory for maximum likelihood estimators.

8. The asymptotic distribution theory for maximum likelihood estimators was valid under regularity
conditions. Here is a situation where those conditions are not met. Let Y1, . . . , Yn be independent
U [0, θ] random variables, for some θ ∈ Θ = (0,∞). Find the maximum likelihood estimator θ̂n,
as well as its distribution function, mean and variance. What is the asymptotic distribution of
n(θ − θ̂n)/θ?
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9. Let Y have a model function from the exponential dispersion family

f(y;µ, σ2) = exp
[ 1

σ2

{
yθ(µ)−K(θ(µ))

}]
a(σ2, y),

y ∈ Y, µ ∈ M, σ2 ∈ Φ ⊆ (0,∞), and variance function V (µ).

(a) Use the identity µ = µ(θ(µ)) to show that θ′(µ) = 1/V (µ).

(b) Show that the maximum likelihood estimator for µ is Y .

10. Consider a generalised linear model for data (Y1, x1), . . . , (Yn, xn) and let the design matrix X have
ith row xT

i for i = 1, . . . , n.

(a) Use the chain rule to show that the likelihood equations for β may be written as

n∑
i=1

(Yi − µi)Xir

σ2
i V (µi)g′(µi)

= 0, r = 1, . . . , p,

where µi = g−1(xT
i β).

(b) Show that the Fisher information matrix for the parameters (β, σ2) takes the form

i(β, σ2) =

(
i(β) 0
0 i(σ2)

)
,

where (with a slight abuse of notation) i(β) is the p×p block of the Fisher information matrix
corresponding to β. Show that i(β) can be expressed as σ−2XTWX where W is a diagonal
matrix with

Wii =
1

aiV (µi){g′(µi)}2
,

(you need not specify i(σ2), and you may assume ∂2ℓ/∂βj∂σ
2 = ∂2ℓ/∂σ2∂βj for all j).

(c) Show for the canonical link function that the observed information and the Fisher information
for β coincide, that is,

Eβ,σ2

(
− ∂2

∂β∂βT
ℓ(β, σ2)

)
= − ∂2

∂β∂βT
ℓ(β, σ2).

11. Let Y1, . . . , Yn be independent with Yi ∼ N(µi, σ
2) and µi = xT

i β, for i = 1, . . . , n.

(a) Show that the deviance is equal to the residual sum of squares.

(b) Assume now for simplicity that σ2 is known. Show that only one iteration of the Fisher

scoring method is required to attain the maximum likelihood estimator β̂, regardless of the
initial values for the algorithm. What feature of the log-likelihood function ensures that this
is the case?

12. Suppose that Y = Xβ + σε where X is an n× p design matrix of full column rank, and where the
components εi of ε are i.i.d. with εi ∼ tν and degrees of freedom ν > 2. Assume that ν and σ2 > 0
are known and consider estimating β. Let β̂OLS = (XTX)−1XTY .

(a) Write down Var(β̂OLS).

(b) Show that the asymptotic variance of β̂, the maximum likelihood estimator of β, is

ν + 3

ν + 1
σ2(XTX)−1.

You may assume that the regularity conditions for the asymptotic theory of the maximum
likelhood estimator are satisfied.
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Hint: The following facts may be of use. If A ∼ χ2
k, then E(A−1) = (k−2)−1 provided k > 2. Now

if B ∼ χ2
l and A and B are independent, then

A

A+B
∼ Beta(k/2, l/2),

a Beta distribution with parameters k/2 and l/2, provided k, l > 0. If Z ∼ Beta(a, b) then

E(Z) =
a

a+ b

Var(Z) =
ab

(a+ b)2(a+ b+ 1)
.

Also the tν distribution has density proportional to

f(x) = (1 + x2/ν)−(ν+1)/2.
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