- 1. Look at the cabbages data in the library(MASS) package (use ?cabbages to find out about the dataset). Investigate whether the planting date has a significant effect on the weight of the cabbage head. Write out the models you have fitted and explain any conclusions you come to.
- 2. Let $Y \in \mathbb{R}$ be a random variable, let K be its c.g.f. and let $\Theta = \{\theta : K(\theta) < \infty\}$.
 - (a) Show that Θ is convex. *Hint: Use the Hölder inequality.*
 - (b) Suppose that Θ contains an open interval containing zero. Show that the first two cumulants of Y are equal to $\mathbb{E}(Y)$ and $\operatorname{Var}(Y)$, respectively.
- 3. Let Y have a model function from an exponential dispersion family. Compute the cumulant generating function of Y and deduce expressions for the mean and variance of Y.
- 4. We say Y has the inverse Gaussian distribution with parameters ϕ and λ , and write $Y \sim IG(\phi, \lambda)$, if its density is

$$f_Y(y;\phi,\lambda) = \frac{\sqrt{\lambda}}{\sqrt{2\pi}y^{3/2}} e^{\sqrt{\lambda\phi}} \exp\left\{-\frac{1}{2}\left(\frac{\lambda}{y} + \phi y\right)\right\},\,$$

 $y \in (0,\infty), \lambda \in (0,\infty), \phi \in (0,\infty).$

- (a) Compute the cumulant generating function of Y, and hence find its mean and variance.
- (b) Show that the family of inverse Gaussian densities above is an exponential dispersion family, specifying the mean function μ , variance function $V(\mu)$, mean space \mathcal{M} , the range for the dispersion parameter Φ and the canonical link function. *Hint: First find* σ^2 as a function of ϕ and λ by guessing that σ^2 is a function of λ alone.
- 5. Let Y be a random variable with density $f(y;\theta)$ for $y \in \mathcal{Y} \subseteq \mathbb{R}^n$ and some $\theta \in \Theta \subseteq \mathbb{R}^d$, and write $\ell(\theta)$ and $U(\theta)$ for the corresponding log-likelihood and score functions.
 - (a) Assume that the order of differentiation with respect to a component of θ and integration over \mathcal{Y} may be interchanged where necessary. Show that, for $r, s = 1, \ldots, d$,

$$\operatorname{Cov}_{\theta}\{U_{r}(\theta), U_{s}(\theta)\} = -\mathbb{E}_{\theta}\left\{\frac{\partial^{2}}{\partial\theta_{r}\partial\theta_{s}}\ell(\theta)\right\}.$$

- (b) Suppose the components Y_i of Y are i.i.d. and each Y_i has density $h(y_i; \theta)$. Let $i^{(n)}(\theta)$ be the Fisher information of Y. Show that $i^{(n)}(\theta) = ni^{(1)}(\theta)$.
- 6. Find the Fisher information for the parameters (β, σ^2) in the normal linear model $Y = X\beta + \varepsilon$, where $\varepsilon \sim N_n(0, \sigma^2 I)$.
- 7. Let Y_1, \ldots, Y_n be independent Poisson random variables with mean θ .
 - (a) Compute the maximum likelihood estimator $\hat{\theta}_n$.
 - (b) By considering $n\hat{\theta}_n$, write down the distribution of $\hat{\theta}_n$ and deduce its asymptotic distribution directly. Verify that this asymptotic distribution agrees with that predicted by the general asymptotic theory for maximum likelihood estimators.
- 8. The asymptotic distribution theory for maximum likelihood estimators was valid under regularity conditions. Here is a situation where those conditions are not met. Let Y_1, \ldots, Y_n be independent $U[0, \theta]$ random variables, for some $\theta \in \Theta = (0, \infty)$. Find the maximum likelihood estimator $\hat{\theta}_n$, as well as its distribution function, mean and variance. What is the asymptotic distribution of $n(\theta \hat{\theta}_n)/\theta$?

9. Let Y have a model function from the exponential dispersion family

$$f(y;\mu,\sigma^2) = \exp\left[\frac{1}{\sigma^2}\left\{y\theta(\mu) - K(\theta(\mu))\right\}\right]a(\sigma^2,y),$$

 $y \in \mathcal{Y}, \ \mu \in \mathcal{M}, \ \sigma^2 \in \Phi \subseteq (0, \infty), \text{ and variance function } V(\mu).$

- (a) Use the identity $\mu = \mu(\theta(\mu))$ to show that $\theta'(\mu) = 1/V(\mu)$.
- (b) Show that the maximum likelihood estimator for μ is Y.
- 10. Consider a generalised linear model for data $(Y_1, x_1), \ldots, (Y_n, x_n)$ and let the design matrix X have i^{th} row x_i^T for $i = 1, \ldots, n$.
 - (a) Use the chain rule to show that the likelihood equations for β may be written as

$$\sum_{i=1}^{n} \frac{(Y_i - \mu_i) X_{ir}}{\sigma_i^2 V(\mu_i) g'(\mu_i)} = 0, \quad r = 1, \dots, p,$$

where $\mu_i = g^{-1}(x_i^T \beta)$.

(b) Show that the Fisher information matrix for the parameters (β, σ^2) takes the form

$$i(\beta,\sigma^2) = \begin{pmatrix} i(\beta) & 0\\ 0 & i(\sigma^2) \end{pmatrix},$$

where (with a slight abuse of notation) $i(\beta)$ is the $p \times p$ block of the Fisher information matrix corresponding to β . Show that $i(\beta)$ can be expressed as $\sigma^{-2}X^TWX$ where W is a diagonal matrix with

$$W_{ii} = \frac{1}{a_i V(\mu_i) \{g'(\mu_i)\}^2},$$

(you need not specify $i(\sigma^2)$, and you may assume $\partial^2 \ell / \partial \beta_i \partial \sigma^2 = \partial^2 \ell / \partial \sigma^2 \partial \beta_i$ for all j).

(c) Show for the canonical link function that the observed information and the Fisher information for β coincide, that is,

$$\mathbb{E}_{\beta,\sigma^2}\left(-\frac{\partial^2}{\partial\beta\partial\beta^T}\ell(\beta,\sigma^2)\right) = -\frac{\partial^2}{\partial\beta\partial\beta^T}\ell(\beta,\sigma^2)$$

- 11. Let Y_1, \ldots, Y_n be independent with $Y_i \sim N(\mu_i, \sigma^2)$ and $\mu_i = x_i^T \beta$, for $i = 1, \ldots, n$.
 - (a) Show that the deviance is equal to the residual sum of squares.
 - (b) Assume now for simplicity that σ^2 is known. Show that only one iteration of the Fisher scoring method is required to attain the maximum likelihood estimator $\hat{\beta}$, regardless of the initial values for the algorithm. What feature of the log-likelihood function ensures that this is the case?
- 12. Suppose that $Y = X\beta + \sigma\varepsilon$ where X is an $n \times p$ design matrix of full column rank, and where the components ε_i of ε are i.i.d. with $\varepsilon_i \sim t_{\nu}$ and degrees of freedom $\nu > 2$. Assume that ν and $\sigma^2 > 0$ are known and consider estimating β . Let $\hat{\beta}_{OLS} = (X^T X)^{-1} X^T Y$.
 - (a) Write down $\operatorname{Var}(\hat{\beta}_{OLS})$.
 - (b) Show that the asymptotic variance of $\hat{\beta}$, the maximum likelihood estimator of β , is

$$\frac{\nu+3}{\nu+1}\sigma^2 (X^T X)^{-1}.$$

You may assume that the regularity conditions for the asymptotic theory of the maximum likelhood estimator are satisfied.

Hint: The following facts may be of use. If $A \sim \chi_k^2$, then $\mathbb{E}(A^{-1}) = (k-2)^{-1}$ provided k > 2. Now if $B \sim \chi_l^2$ and A and B are independent, then

$$\frac{A}{A+B} \sim Beta(k/2, l/2),$$

a Beta distribution with parameters k/2 and l/2, provided k, l > 0. If $Z \sim Beta(a, b)$ then

$$\mathbb{E}(Z) = \frac{a}{a+b}$$
$$\operatorname{Var}(Z) = \frac{ab}{(a+b)^2(a+b+1)}.$$

Also the t_{ν} distribution has density proportional to

$$f(x) = (1 + x^2/\nu)^{-(\nu+1)/2}$$