
STATISTICAL MODELLING Part IIC / Michaelmas 2023
Example Sheet 2 (of 4)

In all the questions that follow, X is an n by p design matrix with full column rank and P
is the orthogonal projection onto the column space of X. We will assume that n − p ≥ 2.
The vector Y ∈ Rn will be a vector of responses and we will define β̂ := (XTX)−1XTY ,
σ̃2 := ∥(I −P )Y ∥2/(n− p), ε̂ := Y −Xβ̂ and Ŷ := PY . Let pi = Pii be the leverage for the ith

observation. The average of a ∈ Rn is denoted by ā = n−1aT 1n = n−1
∑n

i=1 ai.

1. Consider a linear model Y = Xβ + ε. Now suppose we reparametrise by letting θ = Aβ
where A ∈ Rp×p is invertible, so now we have Y = XA−1θ + ε (with XA−1 the new
design matrix). Show that the fitted values and predictions based on applying OLS in the
reparametrised model will be identical to those in the original model.

2. An n-vector is called constant, if all its entries are the same. The sample correlation of
two non-constant n-vectors a, b is defined as

corr(a, b) =
(a− ā1n)

T (b− b̄1n)

∥a− ā1n∥∥b− b̄1n∥
.

If either a or b is constant, set corr(a, b) = 0.

Consider now a linear model Y = Xβ + ε, where the first column of X is a vector of 1’s.
Suppose Y and the fitted values Ŷ are non-constant.

(a) Show that the coefficient of determination R2 satisfies

R2 =
∥Ŷ − Ȳ 1n∥2

∥Y − Ȳ 1n∥2
.

(b) Show that corr(Y, Ŷ ) =
√
R2.

(c) Show that corr(Y, Ŷ ) = supa∈col(X) corr(Y, a), where col(X) is the column space of
X.

3. Show that the AIC in a normal linear model is

n{1 + log(2πσ̂2)}+ 2(p+ 1).

4. Return to the brain sizes data studied in practical 3.

> file_path <- "http://www.statslab.cam.ac.uk/~ra591/data/"
> BrainSize <- read.csv(paste0(file_path, "BrainSize.csv"))

> attach(BrainSize)

> BrainSizeLM2 <- lm(PIQ ~ MRI_Count + Height)

(a) We want to plot a confidence ellipse for the coefficients for brain size and height. To
do this, first install the ellipse package using

> install.packages("ellipse")

and select a mirror of your choice. Next, load the package with library(ellipse).
Look at ?ellipse.lm and plot a 95% confidence ellipse for the coefficients with

> plot(ellipse(BrainSizeLM2, c(2, 3)), type = "l")
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Using abline, add to the plot the end points of 95% confidence intervals for each
of the coefficients in red (e.g., using confint), and also add in blue the sides of the
confidence rectangle in question 8 of Example sheet 1. If you are using RStudio, you
can output a pdf of your plot by clicking on “Export” above the plot window.

(b) Look at the correlation between the estimates of the coefficients using

> summary(BrainSizeLM2, correlation = TRUE)$correlation

which is an estimate of Corr(β̂, β̂). This can also be obtained in R from

> cov2cor(vcov(BrainSizeLM2))

Compare this to the sample correlation between the corresponding variables

> cor(Height, MRI_Count)

What do you notice? Explain.

5. Let f and g be two densities on R with S := {x : g(x) > 0} = {x : f(x) > 0}. Show that
the Kullback–Leibler divergence,

K(g, f) :=

∫
S
[log{g(x)} − log{f(x)}]g(x)dx,

is non-negative. Hint: Use Jensen’s inequality.

6. Consider forward selection in the linear model Y = β01n+Xβ+ε, where 1n is an n-vector
of 1’s. At the 0th stage, only the intercept term is in the model. Now suppose that the
design matrix for the model fitted in the kth stage for k < p is X(k) := (1n Xj1 · · · Xjk),
where Xj denotes the jth column of X. Show that the next variable to enter the model,
leading to largest reduction in the residual sum of squares, is Xj∗ where

j∗ = argmax
j ̸=j1,...,jk

|(X⊥
j )TY |

∥X⊥
j ∥

.

Here, X⊥
j denotes the orthogonal projection of Xj onto the orthogonal complement of the

column space of X(k).

7. Assume X has full column rank.

(a) Show that pi = xTi (X
TX)−1xi, where xi is the ith row of X (regarded as a column

vector). Deduce that pi > 0.

(b) Suppose the design matrix X consists of just a single variable and a column of 1’s
representing an intercept term (as the first column). Show that

pi =
1

n
+

(Xi2 − X̄2)
2∑n

k=1(Xk2 − X̄2)2
,

where X̄2 := 1
n

∑n
k=1Xk2. Hint: Why can we assume that the ith component of the

second column is Xi2 − X̄2 rather than Xi2?

8. One of the data sets in the Modern Applied Statistics in S-Plus (MASS) library is hills.
You can find out about the data with

> library(MASS)

> ?hills

> pairs(hills)
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(a) The data contain one known error in the winning time. Identify this error (think
carefully!) and subtract an hour from the winning time. Hint: You can examine the
plots and identify observations for which the response and covariates satisfy certain
inequalities e.g.

> hills[(hills$time > 50) & (hills$dist < 10), ]

(b) Can you see any reason why we might want to consider taking logarithms of the
response and the predictor variables? Explain why we should include an intercept
term if we do choose to take logarithms.

(c) Explore at least two linear models for this data, and give estimates with standard
errors for your preferred model. Predict the record time for a hypothetical 5.3 mile
race with a 1100ft climb, giving a 95% prediction interval.

9. (a) Let A be a p× p non-singular matrix and let b ∈ Rp. Prove that if bTA−1b ̸= 1, then
A− bbT is invertible with inverse given by

(A− bbT )−1 = A−1 +
A−1bbTA−1

1− bTA−1b
.

(b) Consider a linear model Y = Xβ + ε with Var(ε) = σ2I, and let xTi denote the ith

row of X. Further, let X(−i) denote the (n− 1)× p matrix obtained by deleting the

ith row of X, and write β̂(−i) for the OLS estimate of β when the ith observation has
been removed. Suppose that X(−i) has full column rank and that the leverage score
pi is less than 1. By noting that

XTX =
n∑

i=1

xix
T
i ,

prove that Var(β̂(−i))−Var(β̂) is positive semi-definite.

(c) Show that

β̂ − β̂(−i) =
1

1− pi
(XTX)−1xi(Yi − xTi β̂), (1)

and hence deduce that the Cook’s distance Di of the observation (Yi, xi) satisfies

Di =
1

p

( pi
1− pi

)
η̂2i ,

where η̂i = (Yi − xTi β̂)/(σ̃
√
1− pi) is the ith standardised residual. Hint: Use part

(a) and question 7(a).

10. Show that

pi +
ε̂2i

∥(I − P )Y ∥2
≤ 1,

so if pi is close to 1, the ith residual is forced to be close to 0. Hint: First write out
an expression for ε̂i involving I − P . Then make use of the fact that I − P is an or-
thogonal projection and use the Cauchy–Schwarz inequality to get something that, after
simplification, gives the above.
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