
STATISTICAL MODELLING Part IIC
Example Sheet 4 (of 4) RDS/Lent 2014

1. Consider a generalised linear model with vector of responses Y = (Y1, . . . , Yn)T and design
matrix X with ith row xTi . Show that if the link function g is the canonical link, the
dispersion parameter σ2 = 1 and the ai = 1, then writing µ̂i = g−1(xTi β̂) where β̂ is the
maximum likelihood estimate of the vector of regression coefficients, then we have

XTY = XT µ̂.

Conclude also that if an intercept term is included in X then

n∑
i=1

µ̂i =

n∑
i=1

Yi.

2. Suppose that for some strictly increasing function f , we have

Y ∗i = f(xTi β
∗ + εi), i = 1, . . . , n,

where ε ∼ Nn(0, σ2I), and the xi are covariates in Rp with first component equal to 1.
Suppose that for some constant c, we observe

Yi := 1{Y ∗
i >c}.

Show that Y1, . . . , Yn are independent and

E(Yi) = Φ(xTi β)

for some β that you should specify.

3. We wish to study how various explanatory variables may contribute to the development
of asthma in children. One way to do this would be to randomly select n newborn babies
and then study them for the first 5 years, measuring the values of the relevant covariates
and noting down whether they develop asthma or not within the study period. However,
this sort of experiment may be too expensive to carry out, and instead, we acquire the
medical records of some children who developed asthma within the first five years of their
life, and some children who did not. Luckily the medical records contain all the covariates
we intended to measure.

We can imagine that the records we obtain are a sample from a large collection of data
(y1, x1), . . . , (yN , xN ) ∈ {0, 1} × Rp, where each yi indicates the development of asthma
and can be considered as a realisation of a Bernoulli random variable Yi with πi := P(Yi =
1) ∈ (0, 1),

log

(
πi

1− πi

)
= α+ xTi β,

and all the Yi are independent. Let Zi indicate whether (Yi, xi) is in our sample: 1 if it
is, 0 if not. Suppose that for all i = 1, . . . , N ,

P(Zi = 1|Yi = 1) = p1, and P(Zi = 1|Yi = 0) = p0,

where p1, p0 > 0 are unknown, and further that the (Yi, Zi) are all independent. Show
that

P(Yi = 1|Zi = 1)

1− P(Yi = 1|Zi = 1)
=
p1
p0

exp(α+ xTi β).

Conclude that it is possible to estimate β from our medical records data, but not α.
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4. (Short Tripos 2005/2/5I) Below are three R commands, and the corresponding output
(which is slightly abbreviated). Explain the effects of the commands. How is the deviance
defined, and why do we have d.f.=7 in this case? Interpret the numerical values found
in the output.

> n <- c(3,5,16,12,11,34,37,51,56)

> i <- 1:9

> summary(glm(n~i,poisson))

deviance = 13.218

d.f. = 7

Coefficients:

Value Std.Error

(intercept) 1.363 0.2210

i 0.3106 0.0382

5. Consider a two-way contingency table where the row totals are fixed. We model the
vectors of the responses in the rows as independent multinomial random variables. More
concretely, if ni, i = 1, . . . , I denotes the sum of the ith row, we model the response in the
ith row, Yi as

Yi ∼ Multi(ni; pi1, . . . , piJ),

with Y1, . . . , YI independent, and

pij =
exp(xTijβ)∑J
j=1 exp(xTijβ)

∈ (0, 1).

Show that if we instead model the jth component of Yi, Yij , as independent Poisson
random variables with E(Yij) = µij > 0

log(µij) = αi + xTijβ,

then the maximum likelihood estimators of β under the multinomial model and the Poisson
model will coincide, provided they are unique. Furthermore, prove that the corresponding
estimates for E(Yij) from the two models are the same.

6. Show that the log-likelihood for binomial regression with data (y1, x1), . . . , (yn, xn) ∈
{0, 1} × Rp when the response is binary and the canonical link function is used can be
written as

−
n∑
i=1

log(1 + exp(−ỹixTi β)),

where ỹi = 2yi − 1.

7. You see below the results of using glm to analyse data from Agresti (1996) on tennis
matches between 5 top women tennis players (1989–90). We let yij be the number of wins
of player i against player j, and let nij be the total number of matches of i against j, for
1 ≤ i < j ≤ 5. Thus we have 10 observations, which we will assume are realisations of
independent binomial random variables yij , with

Yij ∼ Bin(nij , µij)

and

log

(
µij

1− µij

)
= αi − αj .

The parameter αi represents the quality of player i. The data are tabulated in R as follows
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wins tot sel graf saba navr sanc

2 5 1 -1 0 0 0

1 1 1 0 -1 0 0

3 6 1 0 0 -1 0

2 2 1 0 0 0 -1

6 9 0 1 -1 0 0

3 3 0 1 0 -1 0

7 8 0 1 0 0 -1

1 3 0 0 1 -1 0

3 5 0 0 1 0 -1

3 4 0 0 0 1 -1

Thus for example, the first row tells us that Seles (sel) played Graf five times and won
on two occasions. We perform the following R commands (the output has been slightly
abbreviated).

fit <- glm(wins/tot ~ sel + graf + saba + navr - 1, binomial, weights=tot)

> summary(fit, correlation=TRUE)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

sel 1.5331 0.7871 1.948 0.05142 .

graf 1.9328 0.6784 2.849 0.00438 **

saba 0.7309 0.6771 1.079 0.28042

navr 1.0875 0.7237 1.503 0.13289

Null deviance: 16.1882 on 10 degrees of freedom

Residual deviance: 4.6493 on 6 degrees of freedom

Correlation of Coefficients:

sel graf saba

graf 0.59

saba 0.46 0.60

navr 0.63 0.54 0.49

Note the -1 in the model formula removes the intercept term that would otherwise be
included by default.

(a) Why do we not include an intercept when fitting the model in R?

(b) Why is Sánchez (sanc) not included in the model formula?

(c) If we assume that small dispersion asymptotics are relevant (which to be fair they
may not be as the ni are rather small), should we reject our model in favour of the
saturated model?

(d) Can we confidently (at the 5% level) say that Graf is better than Sanchez?

(e) Can we confidently (at the 5% level) say that Graf is better than Seles? [Use the
correlation matrix and a calculator, or R (but write out your calculations. P(Z ≤
1.64) ≈ 0.95 when Z ∼ N(0, 1).]

(f) What is your estimate of the probability that Sabatini (saba) beats Sánchez, in a
single match? Give a 95% confidence interval for this probability. [Use a calculator
or R. P(Z ≤ 1.96) ≈ 0.975 when Z ∼ N(0, 1)]
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8. (Long Tripos 2005/4/13I)

(a) Suppose that Y1, . . . , Yn are independent random variables, and that Y1 has proba-
bility density function

f(yi|β, ν) =

(
νyi
µi

)ν
e−yiν/µi

1

Γ(ν)

1

yi
for yi > 0

where
1/µi = βTxi , for 1 ≤ i ≤ n,

and x1, . . . , xn are given p-dimensional vectors, and ν is known.

Show that E(Yi) = µi and that var(Yi) = µ2i /ν.

(b) Find the score equation for β̂, the maximum likelihood estimator of β, and suggest
an iterative scheme for its solution.

(c) If p = 2, and xi =

(
1
zi

)
, find the large-sample distribution of β̂2. Write your answer

in terms of a, b, c and ν, where a, b, c are defined by

a =
∑

µ2i , b =
∑

ziµ
2
i , c =

∑
z2i µ

2
i .

9. Agresti (1990) gives the table below, relating mothers’ education to fathers’ education for
a sample of eminent black Americans (defined as persons having a biographical sketch in
the publication Who’s Who Among Black Americans.

Mother’s Father’s education
education 1 2 3 4

1 81 3 9 11
2 14 8 9 6
3 43 7 43 18
4 21 6 24 87

The categories 1–4 indicate increasing levels of education. We wish to model the entries
Yij as components of a multinomial random vector with corresponding probabilities pij
where

pij =

{
θφi + (1− θ)αiβj , for i = j

(1− θ)αiβj , for i 6= j,

and

0 ≤ θ < 1,

φi, αi, βj > 0,∑
i

φi =
∑
i

αi =
∑
j

βj = 1.

Give an interpretation of this model. Why might we expect that θ > 0 here?

Now model the Yij as independent Poisson random variables with means µij = exp(xTijθ).

What explanatory variables xij will yield fitted values µ̂ij = exp(xTij θ̂) equal to those from
the multinomial model above? You will need to introduce some non-negativity constraints
on the components of θ.
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