
STATISTICAL MODELLING Part IIC
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1. Look at the cabbages data in the library(MASS) package. Investigate whether the
planting date has a significant effect on the weight of the cabbage head. Write out the
models you have fit and explain any conclusions you come to.

2. Let Y have a model function of exponential dispersion family form. Compute the cumulant
generating function of Y and deduce expressions for the mean and variance of Y .

3. Show that the family of Poisson probability mass functions

f(y;λ) =
λye−λ

y!
, y ∈ {0, 1, . . .}, λ ∈ (0,∞)

is an exponential dispersion family. Specify the mean function µ, variance function V (µ),
mean space M, and the canonical link function (you may take the dispersion parameter
to be equal to 1).

4. We say Y has the inverse Gaussian distribution with parameters φ and λ, and write
Y ∼ IG(φ, λ) if its density is

fY (y;φ, λ) =

√
λ√

2πy3/2
e
√
λφ exp

{
−1

2

(λ
y

+ φy
)}
,

y ∈ (0,∞), λ ∈ (0,∞), φ ∈ (0,∞). Compute the cumulant generating function of Y , and
hence find its mean and variance.

Show that the family of inverse Gaussian densities above is an exponential dispersion
family, specifying the mean function µ, variance function V (µ), mean spaceM, the range
for the dispersion parameter Φ and the canonical link function. Hint: First find σ2 as a
function of φ and λ by guessing that σ2 is a function of λ alone.

5. Let Y be a random variable with density f(y; θ) for y ∈ Y ⊆ Rn and some θ ∈ Θ ⊆ Rd,
and write `(θ;Y ) and U(θ;Y ) for the corresponding log-likelihood and score functions.
Assume that the order of differentiation with respect to a component of θ and integration
over Y may be interchanged where necessary. Show that, for r, s = 1, . . . , d,

Covθ{Ur(θ;Y ), Us(θ;Y )} = −Eθ
{ ∂2

∂θr∂θs
`(θ;Y )

}
.

6. Let Y1, . . . , Yn be independent Poisson random variables with mean θ. Compute the
maximum likelihood estimator θ̂n. By considering nθ̂n, write down the distribution of θ̂n
and deduce its asymptotic distribution directly. Verify that this asymptotic distribution
agrees with that predicted by the general asymptotic theory for maximum likelihood
estimators.

7. Let Y1, . . . , Yn be independent Poisson(θ) random variables. Show that both Ȳ = n−1
∑
Yi

and S2 = (n−1)−1
∑

(Yi−Ȳ )2 are unbiased estimators of θ. Without calculating Varθ(S
2),

argue that Ȳ is at least as good an estimator as S2.
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8. The asymptotic distribution theory for maximum likelihood estimators was valid un-
der regularity conditions. Here is a situation where those conditions are not met. Let
Y1, . . . , Yn be independent U [0, θ] random variables, for some θ ∈ Θ = (0,∞). Find the
maximum likelihood estimator θ̂n, as well as its distribution function, mean and variance.
What is the asymptotic distribution of n(θ − θ̂n)/θ?

9. Find the Fisher information for the parameters (β, σ2) in the normal linear model.

10. Let Y have the exponential dispersion model function

f(y;µ, σ2) = exp
[ 1

σ2
{
yθ(µ)−K(θ(µ))

}]
a(σ2, y),

y ∈ Y, µ ∈M, σ2 ∈ Φ ⊆ (0,∞), and variance function V (µ).

(a) Use the identity µ = µ(θ(µ)) to show that

dθ

dµ
=

1

V (µ)
.

(b) Show that the maximum likelihood estimator for µ is Y .

11. Consider a generalised linear model for data (y1, x
T
1 ), . . . , (yn, x

T
n ) and let the design matrix

X have ith row xTi for i = 1, . . . , n.

(a) Use the chain rule to show that the likelihood equations for β may be written as

n∑
i=1

(yi − µi)Xir

σ2i V (µi)g′(µi)
= 0, r = 1, . . . , p,

where µi = g−1(xTi β).

(b) Show that the Fisher information matrix for the parameters (β, σ2) takes the form

i(β, σ2) =

(
i(β) 0

0 i(σ2)

)
,

where (with a slight abuse of notation) we have written i(β) as the p × p block of
the Fisher information matrix corresponding to β. Show that i(β) can be expressed
as XTWX where W is a diagonal matrix with

Wii =
1

aiV (µi){g′(µi)}2
,

(you need not specify i(σ2)). Hint: Use the definition of the Fisher information in
terms of products of first derivatives of the likelihood function.

(c) How do the expressions in (a) and (b) simplify when g(µi) is the canonical link
function?

12. Let Y1, . . . , Yn be independent with Yi ∼ N(µi, σ
2) and µi = xTi β, for i = 1, . . . , n. Show

that the deviance is equal to the residual sum of squares.

13. Let Y1, . . . , Yn be independent with Yi ∼ N(µi, σ
2) for i = 1, . . . , n, where µi = α + βxi,

and assume for simplicity that σ2 is known. Show that only one iteration of the Fisher
scoring method is required to attain the maximum likelihood estimator (α̂, β̂)T , regardless
of the initial values for the algorithm. What feature of the log-likelihood function ensures
that this is the case?
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14. Suppose that Y = Xβ+σε where X is an n× p design matrix of full column rank, ε ∼ tν
and ν > 2. Assume that ν and σ2 > 0 are known and consider estimating β. It can
be shown that Var(εi) = ν/(ν − 2). Let β̂OLS = (XTX)−1XTY . Write down Var(β̂OLS).
According to the theory of general maximum likelihood estimators, what is the asymptotic
variance of β̂, the maximum likelihood estimator of β? Hint: You will need to use the fact
that Γ(t+ 1) = tΓ(t) for t > 0.

15*. (a) A set S ⊆ Rd is convex if for all x, y ∈ S, tx + (1 − t)y ∈ S for all t ∈ [0, 1] (so S
contains the line segment joining x and y). Show that the set of values B that β
can take in a generalised linear model with canonical link function is an open convex
set. Hint: Recall that the natural parameter space Θ of the underlying exponential
dispersion family must be an open interval.

(b) Let S ⊆ Rd be an open convex set. Show that if g : S → R is a twice differentiable

function for which the Hessian matrix is negative definite and x∗ ∈ S satisfies ∂g(x∗)
∂x =

0, then x∗ is the unique maximiser of g on S.

(c) Conclude that if β̂ satisfies ∂`(β̂,σ2)
∂β = 0 where `(β, σ2) is the likelihood of a generalised

linear model with canonical link and the matrix of predictors X with ith row xTi for
i = 1, . . . , n has full column rank, then β̂ is the unique maximiser of `(β, σ2) over β.

16*. Suppose that the maximum likelihood estimator θ̂(n) when n observations are available
for estimating a vector of parameters θ ∈ Rd satisfies

√
n(θ̂(n) − θ) d→ Nd(0, I

−1(θ)),

where I(θ) = limn→∞ i
(n)(θ)/n is a positive definite matrix. Suppose further that i(n)(θ̂(n))/n

p→
I(θ).

A more general version of Slutsky’s lemma states that if Z1, Z2, . . . is a sequence of random
vectors in Rk1 and Y1, Y2, . . . is a sequence of random vectors (or matrices) in Rk2 , if

Zn
d→ Z and Yn

p→ c and g : Rk1 × Rk2 → Rk3 is continuous, then g(Zn, Yn)
d→ g(Z, c).

Prove that under the assumptions above,

(θ̂(n) − θ)T i(n)(θ)(θ̂(n) − θ) d→ χ2
d.

3


