

1. Look at the `cabbages` data in the `library(MASS)` package. Investigate whether the planting date has a significant effect on the weight of the cabbage head. Write out the models you have fit and explain any conclusions you come to.
2. Let Y have a model function of exponential dispersion family form. Compute the cumulant generating function of Y and deduce expressions for the mean and variance of Y .
3. Show that the family of Poisson probability mass functions

$$f(y; \lambda) = \frac{\lambda^y e^{-\lambda}}{y!}, \quad y \in \{0, 1, \dots\}, \lambda \in (0, \infty)$$

is an exponential dispersion family. Specify the mean function μ , variance function $V(\mu)$, mean space \mathcal{M} , and the canonical link function (you may take the dispersion parameter to be equal to 1).

4. We say Y has the inverse Gaussian distribution with parameters ϕ and λ , and write $Y \sim IG(\phi, \lambda)$ if its density is

$$f_Y(y; \phi, \lambda) = \frac{\sqrt{\lambda}}{\sqrt{2\pi y^{3/2}}} e^{\sqrt{\lambda\phi}} \exp\left\{-\frac{1}{2}\left(\frac{\lambda}{y} + \phi y\right)\right\},$$

$y \in (0, \infty)$, $\lambda \in (0, \infty)$, $\phi \in (0, \infty)$. Compute the cumulant generating function of Y , and hence find its mean and variance.

Show that the family of inverse Gaussian densities above is an exponential dispersion family, specifying the mean function μ , variance function $V(\mu)$, mean space \mathcal{M} , the range for the dispersion parameter Φ and the canonical link function. *Hint: First find σ^2 as a function of ϕ and λ by guessing that σ^2 is a function of λ alone.*

5. Let Y be a random variable with density $f(y; \theta)$ for $y \in \mathcal{Y} \subseteq \mathbb{R}^n$ and some $\theta \in \Theta \subseteq \mathbb{R}^d$, and write $\ell(\theta; Y)$ and $U(\theta; Y)$ for the corresponding log-likelihood and score functions. Assume that the order of differentiation with respect to a component of θ and integration over \mathcal{Y} may be interchanged where necessary. Show that, for $r, s = 1, \dots, d$,

$$\text{Cov}_\theta\{U_r(\theta; Y), U_s(\theta; Y)\} = -\mathbb{E}_\theta\left\{\frac{\partial^2}{\partial \theta_r \partial \theta_s} \ell(\theta; Y)\right\}.$$

6. Let Y_1, \dots, Y_n be independent Poisson random variables with mean θ . Compute the maximum likelihood estimator $\hat{\theta}_n$. By considering $n\hat{\theta}_n$, write down the distribution of $\hat{\theta}_n$ and deduce its asymptotic distribution directly. Verify that this asymptotic distribution agrees with that predicted by the general asymptotic theory for maximum likelihood estimators.
7. Let Y_1, \dots, Y_n be independent $\text{Poisson}(\theta)$ random variables. Show that both $\bar{Y} = n^{-1} \sum Y_i$ and $S^2 = (n-1)^{-1} \sum (Y_i - \bar{Y})^2$ are unbiased estimators of θ . Without calculating $\text{Var}_\theta(S^2)$, argue that \bar{Y} is at least as good an estimator as S^2 .

8. The asymptotic distribution theory for maximum likelihood estimators was valid under regularity conditions. Here is a situation where those conditions are not met. Let Y_1, \dots, Y_n be independent $U[0, \theta]$ random variables, for some $\theta \in \Theta = (0, \infty)$. Find the maximum likelihood estimator $\hat{\theta}_n$, as well as its distribution function, mean and variance. What is the asymptotic distribution of $n(\theta - \hat{\theta}_n)/\theta$?

9. Find the Fisher information for the parameters (β, σ^2) in the normal linear model.

10. Let Y have the exponential dispersion model function

$$f(y; \mu, \sigma^2) = \exp\left[\frac{1}{\sigma^2}\{y\theta(\mu) - K(\theta(\mu))\}\right]a(\sigma^2, y),$$

$y \in \mathcal{Y}$, $\mu \in \mathcal{M}$, $\sigma^2 \in \Phi \subseteq (0, \infty)$, and variance function $V(\mu)$.

(a) Use the identity $\mu = \mu(\theta(\mu))$ to show that

$$\frac{d\theta}{d\mu} = \frac{1}{V(\mu)}.$$

(b) Show that the maximum likelihood estimator for μ is Y .

11. Consider a generalised linear model for data $(y_1, x_1^T), \dots, (y_n, x_n^T)$ and let the design matrix X have i^{th} row x_i^T for $i = 1, \dots, n$.

(a) Use the chain rule to show that the likelihood equations for β may be written as

$$\sum_{i=1}^n \frac{(y_i - \mu_i)X_{ir}}{\sigma_i^2 V(\mu_i)g'(\mu_i)} = 0, \quad r = 1, \dots, p,$$

where $\mu_i = g^{-1}(x_i^T \beta)$.

(b) Show that the Fisher information matrix for the parameters (β, σ^2) takes the form

$$i(\beta, \sigma^2) = \begin{pmatrix} i(\beta) & 0 \\ 0 & i(\sigma^2) \end{pmatrix},$$

where (with a slight abuse of notation) we have written $i(\beta)$ as the $p \times p$ block of the Fisher information matrix corresponding to β . Show that $i(\beta)$ can be expressed as $X^T W X$ where W is a diagonal matrix with

$$W_{ii} = \frac{1}{a_i V(\mu_i) \{g'(\mu_i)\}^2},$$

(you need not specify $i(\sigma^2)$). Hint: Use the definition of the Fisher information in terms of products of first derivatives of the likelihood function.

(c) How do the expressions in (a) and (b) simplify when $g(\mu_i)$ is the canonical link function?

12. Let Y_1, \dots, Y_n be independent with $Y_i \sim N(\mu_i, \sigma^2)$ and $\mu_i = x_i^T \beta$, for $i = 1, \dots, n$. Show that the deviance is equal to the residual sum of squares.

13. Let Y_1, \dots, Y_n be independent with $Y_i \sim N(\mu_i, \sigma^2)$ for $i = 1, \dots, n$, where $\mu_i = \alpha + \beta x_i$, and assume for simplicity that σ^2 is known. Show that only one iteration of the Fisher scoring method is required to attain the maximum likelihood estimator $(\hat{\alpha}, \hat{\beta})^T$, regardless of the initial values for the algorithm. What feature of the log-likelihood function ensures that this is the case?

14. Suppose that $Y = X\beta + \sigma\varepsilon$ where X is an $n \times p$ design matrix of full column rank, $\varepsilon \sim t_\nu$ and $\nu > 2$. Assume that ν and $\sigma^2 > 0$ are known and consider estimating β . It can be shown that $\text{Var}(\varepsilon_i) = \nu/(\nu - 2)$. Let $\hat{\beta}_{\text{OLS}} = (X^T X)^{-1} X^T Y$. Write down $\text{Var}(\hat{\beta}_{\text{OLS}})$. According to the theory of general maximum likelihood estimators, what is the asymptotic variance of $\hat{\beta}$, the maximum likelihood estimator of β ? *Hint: You will need to use the fact that $\Gamma(t + 1) = t\Gamma(t)$ for $t > 0$.*

15*. (a) A set $S \subseteq \mathbb{R}^d$ is convex if for all $x, y \in S$, $tx + (1 - t)y \in S$ for all $t \in [0, 1]$ (so S contains the line segment joining x and y). Show that the set of values \mathcal{B} that β can take in a generalised linear model with canonical link function is an open convex set. *Hint: Recall that the natural parameter space Θ of the underlying exponential dispersion family must be an open interval.*

(b) Let $S \subseteq \mathbb{R}^d$ be an open convex set. Show that if $g : S \rightarrow \mathbb{R}$ is a twice differentiable function for which the Hessian matrix is negative definite and $x^* \in S$ satisfies $\frac{\partial g(x^*)}{\partial x} = 0$, then x^* is the unique maximiser of g on S .

(c) Conclude that if $\hat{\beta}$ satisfies $\frac{\partial \ell(\hat{\beta}, \sigma^2)}{\partial \beta} = 0$ where $\ell(\beta, \sigma^2)$ is the likelihood of a generalised linear model with canonical link and the matrix of predictors X with i^{th} row x_i^T for $i = 1, \dots, n$ has full column rank, then $\hat{\beta}$ is the unique maximiser of $\ell(\beta, \sigma^2)$ over β .

16*. Suppose that the maximum likelihood estimator $\hat{\theta}^{(n)}$ when n observations are available for estimating a vector of parameters $\theta \in \mathbb{R}^d$ satisfies

$$\sqrt{n}(\hat{\theta}^{(n)} - \theta) \xrightarrow{d} N_d(0, I^{-1}(\theta)),$$

where $I(\theta) = \lim_{n \rightarrow \infty} i^{(n)}(\theta)/n$ is a positive definite matrix. Suppose further that $i^{(n)}(\hat{\theta}^{(n)})/n \xrightarrow{p} I(\theta)$.

A more general version of Slutsky's lemma states that if Z_1, Z_2, \dots is a sequence of random vectors in \mathbb{R}^{k_1} and Y_1, Y_2, \dots is a sequence of random vectors (or matrices) in \mathbb{R}^{k_2} , if $Z_n \xrightarrow{d} Z$ and $Y_n \xrightarrow{p} c$ and $g : \mathbb{R}^{k_1} \times \mathbb{R}^{k_2} \rightarrow \mathbb{R}^{k_3}$ is continuous, then $g(Z_n, Y_n) \xrightarrow{d} g(Z, c)$.

Prove that under the assumptions above,

$$(\hat{\theta}^{(n)} - \theta)^T i^{(n)}(\theta)(\hat{\theta}^{(n)} - \theta) \xrightarrow{d} \chi_d^2.$$