
STATISTICAL MODELLING Part IIC
Example Sheet 2 (of 4) RDS/Lent 2014

In all the questions that follow, X is an n by p design matrix with full column rank and P
is the orthogonal projection on to the column space of X. We will assume that n − p ≥ 2.
The vector Y ∈ Rn will be a vector of responses and we will define β̂ := (XTX)−1XTY ,
σ̃2 := ‖(I − P )Y ‖2/(n− p) and ε̂ := Y −Xβ̂.

1. Show that writing P0 for the orthogonal projection on to X0, a matrix composed of a
(proper and non-empty) subset of the columns of X, we have

‖(P − P0)Y ‖2 = ‖(I − P0)Y ‖2 − ‖(I − P )Y ‖2.

2. Data are available on weights of two groups of three rats at the beginning of a fortnight
and at its end. During the fortnight, one group was fed normally, and the other was
given a growth inhibitor. The weights of the kth rat in the jth group before and after
the fortnight are Xjk and yjk respectively. The yjk are taken as realisations of random
variables Yjk that follow the model Yjk = αj + βjXjk + εjk.

(a) Let Y be the vector of responses, so Y = (Y11, Y12, Y13, Y21, Y22, Y23)
T , and similarly

let ε be the vector of random errors. Write down the model above in the form
Y = Xθ + ε, giving the design matrix X explicitly.

(b) The model is to be reparametrised in such a way that it can be specialised to (i)
two parallel lines for the two groups, (ii) two lines with the same intercept, (iii) one
common line for both groups, just by setting parameters to zero. Give one design
matrix that can be made to correspond to (i), (ii) and (iii), just by dropping columns,
specifying which columns are to be dropped for which cases.

3. Suppose the design matrix X consists of just a single variable and a column of 1’s rep-
resenting an intercept term (as the first column). Show that the leverage, pi, of the ith

observation satisfies

pi =
1

n
+

(Xi2 − X̄2)
2∑n

k=1(Xk2 − X̄2)2
,

where X̄2 := 1
n

∑n
k=1Xk2. Hint: Why can we assume that the ith component of the second

column is Xi2 − X̄2 rather than Xi2?

4. Return to the brain sizes data studied in practical 3.

> file_path <-

+ "http://www.statslab.cam.ac.uk/~rds37/teaching/statistical_modelling/"

> BrainSize <- read.csv(paste(file_path, "BrainSize.csv", sep =""))

> attach(BrainSize)

> BrainSizeLM2 <- lm(PIQ ~ MRI_Count + Height)

In this question we will plot a confidence ellipse for the coefficients for brain size and
height. To do this, first install the ellipse package using

> install.packages("ellipse")
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and selecting a mirror of your choice. Next load the package with library(ellipse).
Look at ?ellipse.lm and plot a 95% confidence ellipse for the coefficients with

> plot(ellipse(BrainSizeLM2, c(2, 3)), type = "l")

Using abline add to the plot the end points of 95% confidence intervals for each of the
coefficients in red, and also add in blue the sides of the confidence rectangle in question
7 of Example sheet 1. If you are using Rstudio, you can output a pdf of your plot by
clicking on “Export” above the plot window. Now look at the correlation between the
estimates of these coefficients using

> summary(BrainSizeLM2, correlation = TRUE)$correlation

and compare this to the correlation between the corresponding variables

> cor(Height, MRI_Count)

What do you notice? Explain.

5. Let f and g be two densities on R with Sg := {x : g(x) > 0} ⊆ {x : f(x) > 0}. Show that
the Kullback–Liebler divergence,

K(g, f) :=

∫
Sg

[log{g(x)} − log{f(x)}]g(x)dx,

is non-negative.

6. Consider forward selection in the linear model Y = β01n+Xβ+ε, where 1n is an n-vector
of 1’s. At the 0th stage, only the intercept term is in the model. Now suppose that the
design matrix for the model fitted in the kth stage for k < p is X(k) := (1n Xj1 · · · Xjk),
where Xj denotes the jth column of X. Show that the next variable to enter the model is
Xj∗ where

j∗ = argmax
j 6=j1,...,jk

|(X⊥j )TY |
‖X⊥j ‖

.

Here X⊥j denotes the orthogonal projection of Xj onto the orthogonal complement of the

column space of X(k).

7. One of the data sets in the Modern Applied Statistics in S-Plus (MASS) library is hills.
You can find out about the data with

> library(MASS)

> ?hills

> pairs(hills)

The data contain one known error in the winning time. Identify this error (think carefully!)
and subtract an hour from the winning time. Hint: You can examine the plots and identify
observations for which the response and covariates satisfy certain inequalities e.g.

> hills[(hills$time > 50) & (hills$dist < 10), ]
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Can you see any reason why we might want to consider taking logarithms of the variables?
Explain why we should include an intercept term if we do choose to take logarithms.

Explore at least two linear models for this data, and give estimates with standard errors
for your preferred model. Predict the record time for a hypothetical 5.3 mile race with a
1100ft climb, giving a 95% prediction interval.

8. (a) Let A be a p× p non-singular matrix and let b ∈ Rp. Prove that if bTA−1b 6= 1, then
A− bbT is invertible with inverse given by

(A− bbT )−1 = A−1 +
A−1bbTA−1

1− bTA−1b
.

(b) Consider a linear model Y = Xβ + ε with Var(ε) = σ2I, and let xTi denote the ith

row of X. Further, let X(−i) denote the (n − 1) × p matrix obtained by deleting

the ith row of X, and suppose that this matrix has full column rank and that the
leverage score of the ith observation, pi, is less than 1. By noting that

XTX =
n∑

i=1

xix
T
i ,

prove that writing β̂(−i) for the OLS estimate of β when the ith observation has been
removed, the difference

Var(β̂(−i))−Var(β̂)

is positive semi-definite. Here β̂ is the usual OLS estimate of β based on all n
observations.

(c) Show that

β̂ − β̂(−i) =
1

1− pi
(XTX)−1xi(Yi − xTi β̂),

and hence deduce that the Cook’s distance Di of the observation (Yi, xi) satisfies

Di =
1

p

( pi
1− pi

)
η̂2i ,

where η̂i = (Yi − xTi β̂)/(σ̃
√

1− pi) is the ith studentised fitted residual.

9. (a) (Continuation) The externally studentised residual of the ith observation may be
defined as

η̃i :=
ε̂i

σ̃(−i)
√

1− pi
,

where σ̃(−i) is the equivalent of σ̃ but calculated omitting the ith observation, so

σ̃2(−i) =
1

n− p− 1
‖Y(−i) −X(−i)β̂(−i)‖2,

where Y(−i) is the response Y without the ith component. Show that η̃i ∼ tn−p−1.
Hint: It may help to first show that

ε̂i = (1− pi)(Yi − xTi β̂(−i)).

How can we construct a hypothesis test based on η̃i to test whether the ith obser-
vation is an outlier?
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(b) Another dataset in the MASS package is mammals which gives the body and brain
masses of 68 mammals. Fit a linear model to the log-transformed data and then apply
your hypothesis test to check whether the observation corresponding to humans is
an outlier. The function rstudent that calculates externally studentised residuals
may be of help. What is the p-value you obtain?

10. Show that

pi +
ε̂2i

‖(I − P )Y ‖2
≤ 1,

so if pi is close to 1, the ith residual is forced to be close to 0. Hint: Use the Cauchy–
Schwarz inequality and the fact that I − P is an orthogonal projection.
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