STATISTICAL MODELLING Example Sheet 1 (of 4)

Part IIC RDS/Lent 2014

In all the questions that follow, X is an n by p design matrix with full column rank and P is the orthogonal projection on to the column space of X. Also, let X_0 be the matrix formed from the first $p_0 < p$ columns of X and let P_0 be the orthogonal projection on to the column space of X_0 . The vector $Y \in \mathbb{R}^n$ will be a vector of responses and we will define $\hat{\beta} := (X^T X)^{-1} X^T Y$, $\hat{\beta}_0 := (X_0^T X_0)^{-1} X_0^T Y$ and $\tilde{\sigma}^2 := \|(I - P)Y\|^2/(n - p)$.

1. Show that X^TX is invertible and that

$$\underset{b \in \mathbb{R}^p}{\operatorname{argmin}} \|Y - Xb\|^2 = (X^T X)^{-1} X^T Y.$$

2. Consider the linear model

$$Y = X\beta + \varepsilon, \quad \operatorname{Var}(\varepsilon) = \sigma^2 I.$$
 (1)

Let $\tilde{\beta}$ be an unbiased linear estimator of β with $X\tilde{\beta} = AY$.

- (a) Show that AP = P so we may write A = P + A(I P).
- (b) By considering Var(AY) Var(PY) or otherwise, show that $\hat{\beta}$ is the best linear unbiased estimator for β in linear model above (i.e. show that $Var(\tilde{\beta}) Var(\hat{\beta})$ is positive semi-definite).
- (c) Conclude that for any $x^* \in \mathbb{R}^p$,

$$\mathbb{E}\{\|x^{*T}(\hat{\beta} - \beta)\|^2\} \le \mathbb{E}\{\|x^{*T}(\tilde{\beta} - \beta)\|^2\}.$$

3. Let W be an $n \times n$ diagonal matrix with positive entries. Using the result from question 2 or otherwise, show that the best linear unbiased estimator for β in the model

$$Y = X\beta + \varepsilon, \quad \operatorname{Var}(\varepsilon) = \sigma^2 W^{-1},$$

is

$$\hat{\beta}^{\mathbf{w}} := (X^T W X)^{-1} X^T W Y.$$

What are the variances of $\hat{\beta}^{w}$ and $\hat{\beta} := (X^{T}X)^{-1}X^{T}Y$? Using your answer to question 1 or otherwise, further show that

$$\hat{\beta}^{\mathbf{w}} = \underset{b \in \mathbb{R}^p}{\operatorname{argmin}} \left\{ \sum_{i=1}^n W_{ii} (Y_i - x_i^T b)^2 \right\},\,$$

where x_i^T is the i^{th} row of X.

4. Consider the model $Y = f + \varepsilon$ where $\mathbb{E}(\varepsilon) = 0$ and $\operatorname{Var}(\varepsilon) = \sigma^2 I$ and $f \in \mathbb{R}^n$ is a non-random vector. Suppose we have have performed linear regression of Y on X so the fitted values are PY. Show that if $Y^* = f + \varepsilon^*$ where $\mathbb{E}(\varepsilon^*) = 0$, $\operatorname{Var}(\varepsilon^*) = \sigma^2 I$ and ε^* is independent of ε , then

$$\frac{1}{n}\mathbb{E}(\|PY - Y^*\|^2) = \frac{\sigma^2 p}{n} + \frac{1}{n}\|(I - P)f\|^2 + \sigma^2.$$

- 5. (a) Let V and W be subspaces of \mathbb{R}^n with $V \leq W$. Let Π_V and Π_W denote orthogonal projections on to V and W respectively. Show that for all $v \in \mathbb{R}^n$, $||v||^2 \geq ||\Pi_W v||^2 \geq ||\Pi_V v||^2$.
 - (b) Consider the linear model (1) but where only the first p_0 components of β are non-zero. Show that

$$\operatorname{Var}(\hat{\beta}_{0,j}) \leq \operatorname{Var}(\hat{\beta}_j)$$
 for $j = 1, \dots, p_0$.

Here $\hat{\beta}_{0,j}$ denotes the j^{th} component of $\hat{\beta}_0$. Hint: Use the alternative characterisation of $\hat{\beta}_j$ that if X_j^{\perp} is the orthogonal projection of X_j (the j^{th} column of X) on to the orthogonal complement of the column space of X_{-j} (the matrix formed by removing the j^{th} column from X), then $\hat{\beta}_j = \frac{(X_j^{\perp})^T Y}{\|X^{\perp}\|^2}$.

- 6. Show that the maximum likelihood estimator of σ^2 in the normal linear model $(Y = X\beta + \varepsilon)$ with $\varepsilon \sim N_n(0, \sigma^2 I)$ is $||(I P)Y||^2/n$.
- 7. Let the cuboid C be defined $C := \prod_{j=1}^{p} C_j(\alpha/p)$, where

$$C_{j}(\alpha) = \left[\hat{\beta}_{j} - \sqrt{\tilde{\sigma}^{2}(X^{T}X)_{jj}^{-1}} t_{n-p}(\alpha/2), \ \hat{\beta}_{j} + \sqrt{\tilde{\sigma}^{2}(X^{T}X)_{jj}^{-1}} t_{n-p}(\alpha/2) \right].$$

Assuming the normal linear model, show that $\mathbb{P}_{\beta,\sigma^2}(\beta \in C) \geq 1 - \alpha$.

- 8. Consider the Bayesian linear model $Y = X\beta + \varepsilon$ with $\varepsilon | \omega \sim N_n(0, \omega^{-1}I)$. Let the prior for β conditional on $\omega := \sigma^{-2}$ be $\beta | \omega \sim N_p(0, \omega^{-1}\lambda^{-1}I)$. We leave the prior for ω undefined. Show that the posterior distribution for β satisfies $\beta | Y, \omega \sim N_p(\hat{\beta}_{\lambda}, \omega^{-1}(X^TX + \lambda I)^{-1})$, where $\hat{\beta}_{\lambda} := (X^TX + \lambda I)^{-1}X^TY$. Conclude that $\mathbb{E}(\beta | Y) = \hat{\beta}_{\lambda}$.
- 9. Consider the Bayesian linear model in question 8, but now with a prior for (β, ω) as $p(\beta, \omega) = \omega^{-1}$, as in lectures. Let $Y^* = x^{*T}\beta + \varepsilon^*$, where, conditional on ω , $\varepsilon^* \in \mathbb{R}$ is independent of ε and $\varepsilon^*|\omega \sim N(0, \omega^{-1})$. Find the distribution of $Y^*|\omega, Y$. Write down the posterior distribution of the precision $\omega|Y$ and hence find the posterior predictive distribution $Y^*|Y$.
- 10. This question is about understanding what can happen to the F-test when the expected value of the response is not necessarily linear in β . Consider the model $Y = f + \varepsilon$ where $\varepsilon \sim N_n(0, \sigma^2 I)$ and $f \in \mathbb{R}^n$ is a non-random vector. Define $\beta \in \mathbb{R}^p$ by $X\beta = Pf$, so $Y = X\beta + (I P)f + \varepsilon$, and partition β as $\beta = (\beta_0^T, \beta_1^T)^T$ where $\beta_0 \in \mathbb{R}^{p_0}$ and $\beta_1 \in \mathbb{R}^{p-p_0}$. Suppose we try to test the hypothesis $H_0: \beta_1 = 0$ against the alternative $H_1: \beta_1 \neq 0$ by rejecting the null hypothesis when

$$F := \frac{\frac{1}{p - p_0} \| (P - P_0) Y \|^2}{\frac{1}{n - p} \| (I - P) Y \|^2}$$

exceeds $F_{p-p_0,n-p}(\alpha)$. We will show that the size of this test (the probability of rejecting the null hypothesis when in fact it is true) is at most α .

- (a) Show that the numerator and denominator of F are independent (no matter which hypothesis is true).
- (b) What is the distribution of $||(P-P_0)Y||^2$ under the null hypothesis (i.e. when $Y = X_0\beta_0 + (I-P)f + \varepsilon$)?

(c) By considering the eigendecomposition of I-P, show that $\|(I-P)Y\|^2$ has the same distribution as

$$Z_1^2 + \dots + Z_{n-p}^2,$$

where the Z_i are independent and $Z_i \sim N(\lambda_i, \sigma^2)$ for some λ_i such that

$$\sum_{i=1}^{n-p} \lambda_i^2 = \|(I - P)f\|^2.$$

- (d) For any two real-valued random variables A and B, let us write $A \leq B$ to mean $\mathbb{P}(A > x) \leq \mathbb{P}(B > x)$ for all $x \in (-\infty, \infty)$ (we say A is stochastically less than B). Now prove that if A_1, \ldots, A_m and B_1, \ldots, B_m are all independent real-valued random variables and $A_1 \leq B_1, \ldots, A_m \leq B_m$, then $A_1 + \cdots + A_m \leq B_1 + \cdots + B_m$. Hint: Use induction on m and recall that for real-valued random variables U_1 and U_2 (defined on the same probability space) the tower property of conditional expectation gives us that $\mathbb{P}(U_1 + U_2 > x) = \mathbb{E}\{\mathbb{P}(U_1 > x U_2|U_2)\} := \mathbb{E}\{\mathbb{E}(\mathbb{1}_{\{U_1 > x U_2\}}|U_2)\}$.
- (e) Let $Z \sim \sigma^2 \chi_{n-p}^2$. Show that

$$Z \leq \|(I - P)Y\|^2.$$

Conclude that the size of the test mentioned at the beginning of this question is at most α .

11. Prove that in the linear model $Y = X\beta + \varepsilon$ with $\varepsilon \sim N_n(0, \sigma^2 I)$, the F-test and t-test for testing the significance of a single predictor are equivalent. That is, prove that, taking $p_0 = p - 1$, so P_0 is the orthogonal projection on to the first p - 1 columns of X,

$$\frac{\hat{\beta}_p^2}{(X^TX)_{pp}^{-1}\tilde{\sigma}^2} = \frac{\|(P-P_0)Y\|^2}{\frac{1}{n-p}\|(I-P)Y\|^2}.$$

Hint: Look at the hint to question 5 (b).