
STATISTICAL MODELLING Part IIC.

Example Sheet 1 (of 4) BS/Lent 2012

1. Let Y be a random variable with density f(y; θ) for y ∈ Y ⊆ Rn and some
θ ∈ Θ ⊆ Rd, and write `(θ;Y ) and U(θ;Y ) for the corresponding log-likelihood
and score functions. Assume that the order of differentiation with respect to a
component of θ and integration over Y may be interchanged where necessary.
Show that, for r, s = 1, . . . , d,

Covθ{Ur(θ;Y ), Us(θ;Y )} = −Eθ
{ ∂2

∂θr∂θs
`(θ;Y )

}
.

2. Let Y1, . . . , Yn be independent Poisson random variables with mean θ. Compute
the maximum likelihood estimator θ̂n. By considering nθ̂n, write down the dis-
tribution of θ̂n and deduce its asymptotic distribution directly. Verify that this
asymptotic distribution agrees with that predicted by the general asymptotic
theory for maximum likelihood estimators.

3. Let Y1, . . . , Yn be independent Poisson(θ) random variables. Show that both
Ȳ = n−1

∑
Yi and S2 = (n − 1)−1

∑
(Yi − Ȳ )2 are unbiased estimators of θ.

Without calculating Varθ(S
2), argue that Ȳ is at least as good an estimator as

S2.

4. Let Y1, . . . , Yn be independent U [0, θ] random variables, for some θ ∈ Θ =
(0,∞). Find the maximum likelihood estimator θ̂n, as well as its distribution
function, mean and variance. What is the asymptotic distribution of n(θ −
θ̂n)/θ? Why does the standard theory not apply?

5. Consider the standard linear model Y = Xβ + ε, where X is an n × p matrix
of full rank p. Find the distribution of maximum likelihood estimator β̂ of β.
Calculate the Fisher information i(β), compare it to the variance of β̂ and to
what the asymptotic theory predicts for V ar(β̂).

6. Bayesian Inference.

(a) Find the posterior distribution (up to a normalising constant) for the pa-
rameters β, σ2 under the standard linear model in Question 6. Use the
Jeffreys’ prior p(β, σ2) ∝ σ−2.

(b) Derive the posterior conditionals p(β|σ2, X, Y ) and p(σ2|β,X, Y ), and the
posterior marginal p(σ2|X, Y ).
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(c) Derive the posterior predictive distribution of y∗ at x∗, conditional on σ2:
p(y∗|σ2, x∗, X, Y ).

7. Recall that in the standard linear model above we may express the fitted values
Ŷ = Xβ̂ as Ŷ = PY , where P = X(X>X)−1X>.

(a) Show that P represents an orthogonal projection.

(b) Show that P and I − P are positive semi–definite, where I is the n × n
identity matrix.

(c) Show that I − P has rank n− p and P has rank p.

8. In the standard linear model above, find the maximum likelihood estimator σ̂2

of σ2, and use Cochran’s theorem to find its distribution. [Hint: use the results
from the previous question.]

9. Let Y = Xβ + ε, where X and β are partitioned as X = (X0X1) and β> =
(β>0 β

>
1 ) respectively (where β0 has p0 components and β1 has p − p0 compo-

nents).

(a) Show that β0 and β1 are orthogonal if and only if the Fisher informa-
tion matrix is block diagonal. [This is the appropriate generalisation of
parameter orthogonality to more general parametric models.]

(b) Use this generalisation to show that β and σ2 are orthogonal.

10. Consider the model for responses Y1, . . . , Yn given by

Yi = β0 + β1xi + β2P2(xi) + εi,

where ε1, . . . , εn are independent N(0, σ2) random variables,
∑n

i=1 xi = 0, and
P2 is a monic quadratic polynomial. Find P2 to make β0, β1 and β2 mutually
orthogonal. For this choice of P2, compute the maximum likelihood estimator
(β̂0, β̂1, β̂2)

> and write down its distribution.

11. In the balanced, additive two-way ANOVA model, show that the maximum
likelihood fitted values are Ỹijk = Ȳi++ + Ȳ+j+ − Ȳ . [Hint: use the sum-to-zero
identifiability constraints.]
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