STATISTICAL MODELLING

Practical 7: Poisson regression

Comments and corrections to ioana@statslab.cam.ac.uk

Download the AidsData from the course web page and save it in your RWork directory in a file called aids.txt. It gives the number of reported new cases of AIDS in the UK for 36 consecutive months up to November 1985. Open R, read in the data.

```
> y <- scan("aids.txt", comment.char = "#")
> Month <- 1:36</pre>
```

Exercise: Plot the data as a function of Month.

Fit a generalised linear model with

> PoiMod <- glm(y ~ Month, family = poisson)</pre> > summary(PoiMod) Call: glm(formula = y ~ Month, family = poisson) Deviance Residuals: Min 10 Median 30 Max -2.4196 -1.1553 -0.2742 0.7264 2.8500 Coefficients: Estimate Std. Error z value Pr(|z|)(Intercept) 0.03966 0.21200 0.187 0.852 Month 0.07957 0.00771 10.321 <2e-16 *** ____ Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1 (Dispersion parameter for poisson family taken to be 1)

Null deviance: 190.17 on 35 degrees of freedom Residual deviance: 62.36 on 34 degrees of freedom IAC/Lent 2011

Part IIC

AIC: 177.69

Number of Fisher Scoring iterations: 5

Presumably Poisson is not offended that his name must be entered with a lower case 'p'. Write down the model that is being fitted here. Much of the information is very similar to that presented in the binomial regression examples in Practical 6. How would you compute the estimates of the parameters? By evaluating the Fisher information matrix at the maximum likelihood estimators of the parameters, verify the calculations leading to the standard errors. How are the z- and p-values obtained?

```
> X <- model.matrix(y ~ Month)
> W <- diag(PoiMod$weights)</pre>
```

The standard errors are computed as

> sd.error <- sqrt(diag(solve(t(X) %*% W %*% X)))</pre>

Then the z-values and p-values follow

```
> est <- coef(PoiMod)
> z <- est/sd.error
> apply(matrix(z, nrow = 2), 1, function(q) {
+         2 * (1 - pnorm(q, 0, 1))
+ })
```

[1] 0.8515975 0.000000

The residual deviance is $D(y; \hat{\mu})$. In lectures, we derived the expression

$$D(y;\hat{\mu}) := \sum_{i=1}^{n} d_i = 2\sum_{i=1}^{n} \left[y_i \log \frac{y_i}{\hat{\mu}_i} - (y_i - \hat{\mu}_i) \right] = 2\sum_{i=1}^{n} y_i \log \frac{y_i}{\hat{\mu}_i}$$

for the deviance, where the right-hand side is a simplification for the model containing an intercept term. When we try to use R to verify this formula, however, it complains about having to evaluate terms in the sum for which $y_i = 0$.

Exercise: What should the contribution to the sum from such terms be? Now go ahead and use R to verify that the residual deviance is what you would expect. How does Pearson's χ^2 statistic compare? Recall that Pearson's χ^2 statistic is defined as

$$\sum_{i=1}^n \frac{(y_i - \hat{\mu}_i)^2}{\hat{\mu}_i}$$

Exercise: Why might it not be a very good approximation to say that the residual deviance has a χ^2_{34} distribution if our model with $\log \mu_i = \alpha + \beta i$ is correct? In such circumstances, the residual plots are even more useful, so examine these. In particular, we want to obtain a plot of fitted values against standardised deviance residuals. Recall that the standardised deviance residuals are defined as

$$r_i = \operatorname{sign}(y_i - \hat{\mu}_i) \frac{\sqrt{d_i}}{\sqrt{1 - h_{ii}}}, \quad i = 1, \dots, n,$$

where h_{ii} is the *ith* diagonal element in the hat matrix H for regression in the *IWLS* algorithm,

$$H = W^{1/2} X \left(X^T W X \right)^{-1} X^T W^{1/2}.$$

Check that your computations agree with the output of the command rstandard(PoiMod). An alternative would be to combine consecutive months in some way to ensure each of our fitted values is at least 5, say.

The null deviance is $D(y; \hat{\mu}_0)$, where $\hat{\mu}_0 = \exp(\hat{\alpha})$, and $\hat{\alpha}$ is the maximum likelihood estimator of α in the model in which Y_1, \ldots, Y_n are assumed to be independent with $Y_i \sim \operatorname{Poi}(\mu_i)$, and $\log(\mu_i) = \alpha$ for all *i*. Verify the calculation.

Exercise: Return to your initial plot of Month versus y. Add the fitted line to your plot. What would you have concluded in November 1985?

The next data set is MissingData.

Copy the file missing.txt from the course web page and save it in your Rwork directory. Read in the data as a table and attach the column headings.

```
> MissingData <- read.table("missing.txt", header = TRUE)
> names(MissingData)
```

```
[1] "Sex" "Age" "n" "Still"
```

> attach(MissingData, warn.conflicts = FALSE)

Here, **n** is the number of people in a particular age and sex category reported missing in a year, and **Still** is the number still missing at the end of the year. The three age categories are: 1) 13 years and under, 2) 14-18 years, 3) 19 years and older.

The first command below doesn't plot the points, due to the type="n" option. It does, however, set up the plotting window for the next command.

```
> plot(Age, Still/n, type = "n", main = "MissingData",
+ xlab = "Age", ylab = "Still/n")
> text(Age, Still/n, c("F", "M")[Sex])
> is.factor(Age)
```

[1] TRUE

> is.factor(Sex)

[1] TRUE

```
> Age <- factor(Age)</pre>
```

Figure 1 shows the plot.

EXERCISES: We compare a Poisson regression model with a binomial logistic regression model.

1. Write down the model being fitted below, explaining why we need to include an offset.

MissingData

Figure 1: Plot of MissingData

-0.13819 0.16462 -0.03965 0.13074 -0.12437 0.03949 Coefficients: Estimate Std. Error z value Pr(>|z|)(Intercept) -4.2021 0.1255 -33.484 < 2e-16 *** Age2 -0.1950 0.1415 -1.378 0.168 < 2e-16 *** Age3 1.1017 0.1313 8.387 -0.3703 0.0857 -4.320 1.56e-05 *** SexM___ 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ Signif. codes: (Dispersion parameter for poisson family taken to be 1)

```
Null deviance: 217.10061 on 5 degrees of freedom
Residual deviance: 0.08189 on 2 degrees of freedom
AIC: 45.209
Number of Fisher Scoring iterations: 3
> text(as.real(Age), fitted(PoiMod1)/n, c("f", "m")[Sex])
```

- 2. Now fit a binomial logistic regression model and compare the results. Do either/both of the models fit the data? How would you interpret the output? Can you quantify the change in odds of still being missing at the end of the year if you are female as opposed to male? What if you are 19 years old or over?
- 3. Could we have the same parameter for two of the age categories? Create a new factor, taking values "Young" and "Old" and compare Poisson and logistic binomial additive regression models. Do they still fit the data satisfactorily? Furthermore, perform a likelihood ratio test of the reduced model with 2 age categories against the model with 3 age categories. This can be done using the anova command by specifying that you're performing a χ^2 test, i.e., anova(model1, model2, test='Chisq').