
STATISTICAL MODELLING Part IIC

Practical 7: Poisson regression IAC/Lent 2011

Comments and corrections to ioana@statslab.cam.ac.uk

Download the AidsData from the course web page and save it in your RWork directory in
a file called aids.txt. It gives the number of reported new cases of AIDS in the UK for
36 consecutive months up to November 1985. Open R, read in the data.

> y <- scan("aids.txt", comment.char = "#")

> Month <- 1:36

Exercise: Plot the data as a function of Month.

Fit a generalised linear model with

> PoiMod <- glm(y ~ Month, family = poisson)

> summary(PoiMod)

Call:

glm(formula = y ~ Month, family = poisson)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.4196 -1.1553 -0.2742 0.7264 2.8500

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.03966 0.21200 0.187 0.852

Month 0.07957 0.00771 10.321 <2e-16 ***

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 190.17 on 35 degrees of freedom

Residual deviance: 62.36 on 34 degrees of freedom
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AIC: 177.69

Number of Fisher Scoring iterations: 5

Presumably Poisson is not offended that his name must be entered with a lower case ‘p’.
Write down the model that is being fitted here. Much of the information is very similar
to that presented in the binomial regression examples in Practical 6. How would you
compute the estimates of the parameters? By evaluating the Fisher information matrix
at the maximum likelihood estimators of the parameters, verify the calculations leading
to the standard errors. How are the z- and p-values obtained?

> X <- model.matrix(y ~ Month)

> W <- diag(PoiMod$weights)

The standard errors are computed as

> sd.error <- sqrt(diag(solve(t(X) %*% W %*% X)))

Then the z-values and p-values follow

> est <- coef(PoiMod)

> z <- est/sd.error

> apply(matrix(z, nrow = 2), 1, function(q) {

+ 2 * (1 - pnorm(q, 0, 1))

+ })

[1] 0.8515975 0.0000000

The residual deviance is D(y; µ̂). In lectures, we derived the expression

D(y; µ̂) :=
n∑

i=1

di = 2
n∑

i=1

[
yi log

yi

µ̂i

− (yi − µ̂i)

]
= 2

n∑
i=1

yi log
yi

µ̂i

for the deviance, where the right-hand side is a simplification for the model containing an
intercept term. When we try to use R to verify this formula, however, it complains about
having to evaluate terms in the sum for which yi = 0.
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Exercise: What should the contribution to the sum from such terms be? Now go ahead
and use R to verify that the residual deviance is what you would expect. How does
Pearson’s χ2 statistic compare? Recall that Pearson’s χ2 statistic is defined as

n∑
i=1

(yi − µ̂i)
2

µ̂i

.

Exercise: Why might it not be a very good approximation to say that the residual
deviance has a χ2

34 distribution if our model with log µi = α + βi is correct? In such
circumstances, the residual plots are even more useful, so examine these. In particular,
we want to obtain a plot of fitted values against standardised deviance residuals. Recall
that the standardised deviance residuals are defined as

ri = sign(yi − µ̂i)

√
di√

1− hii

, i = 1, . . . , n,

where hii is the ith diagonal element in the hat matrix H for regression in the IWLS
algorithm,

H = W 1/2X
(
XT WX

)−1
XT W 1/2.

Check that your computations agree with the output of the command rstandard(PoiMod).
An alternative would be to combine consecutive months in some way to ensure each of
our fitted values is at least 5, say.

The null deviance is D(y; ˆ̂µ0), where ˆ̂µ0 = exp(ˆ̂α), and ˆ̂α is the maximum likelihood
estimator of α in the model in which Y1, . . . , Yn are assumed to be independent with
Yi ∼ Poi(µi), and log(µi) = α for all i. Verify the calculation.

Exercise: Return to your initial plot of Month versus y. Add the fitted line to your
plot. What would you have concluded in November 1985?

The next data set is MissingData.

Copy the file missing.txt from the course web page and save it in your Rwork directory.
Read in the data as a table and attach the column headings.

> MissingData <- read.table("missing.txt", header = TRUE)

> names(MissingData)

[1] "Sex" "Age" "n" "Still"

> attach(MissingData, warn.conflicts = FALSE)
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Here, n is the number of people in a particular age and sex category reported missing
in a year, and Still is the number still missing at the end of the year. The three age
categories are: 1) 13 years and under, 2) 14-18 years, 3) 19 years and older.

The first command below doesn’t plot the points, due to the type="n" option. It does,
however, set up the plotting window for the next command.

> plot(Age, Still/n, type = "n", main = "MissingData",

+ xlab = "Age", ylab = "Still/n")

> text(Age, Still/n, c("F", "M")[Sex])

> is.factor(Age)

[1] TRUE

> is.factor(Sex)

[1] TRUE

> Age <- factor(Age)

Figure 1 shows the plot.

EXERCISES: We compare a Poisson regression model with a binomial logistic regression
model.

1. Write down the model being fitted below, explaining why we need to include an
offset.

> PoiMod1 <- glm(Still ~ Age + Sex, family = poisson,

+ offset = log(n))

> summary(PoiMod1)

Call:

glm(formula = Still ~ Age + Sex, family = poisson, offset = log(n))

Deviance Residuals:

1 2 3 4 5 6
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Figure 1: Plot of MissingData

-0.13819 0.16462 -0.03965 0.13074 -0.12437 0.03949

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.2021 0.1255 -33.484 < 2e-16 ***

Age2 -0.1950 0.1415 -1.378 0.168

Age3 1.1017 0.1313 8.387 < 2e-16 ***

SexM -0.3703 0.0857 -4.320 1.56e-05 ***

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

(Dispersion parameter for poisson family taken to be 1)
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Null deviance: 217.10061 on 5 degrees of freedom

Residual deviance: 0.08189 on 2 degrees of freedom

AIC: 45.209

Number of Fisher Scoring iterations: 3

> text(as.real(Age), fitted(PoiMod1)/n, c("f", "m")[Sex])

2. Now fit a binomial logistic regression model and compare the results. Do either/both
of the models fit the data? How would you interpret the output? Can you quantify
the change in odds of still being missing at the end of the year if you are female as
opposed to male? What if you are 19 years old or over?

3. Could we have the same parameter for two of the age categories? Create a new
factor, taking values "Young" and "Old" and compare Poisson and logistic binomial
additive regression models. Do they still fit the data satisfactorily? Furthermore,
perform a likelihood ratio test of the reduced model with 2 age categories against the
model with 3 age categories. This can be done using the anova command by specify-
ing that you’re performing a χ2 test, i.e., anova(model1, model2, test=’Chisq’).
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