
STATISTICAL MODELLING Part IIC

Practical 6: Binomial regression IAC/Lent 2010

Comments and corrections to ioana@statslab.cam.ac.uk

Start R and change the current working directory to U:\Rwork. Next, download the
AlloyData from the course web page

http://www.statslab.cam.ac.uk/~ioana/statsmod.html

Save the file alloy.txt in the current working directory (U:\Rwork). The AlloyData
studies the compressive strength of an alloy fastener used in aircraft construction. The
pressure loads x1, ..., x10 range from 2500 pounds per square inch (psi) to 4300 psi. The
number of fasteners tested and the number of failures are reported.

> AlloyData <- read.table("alloy.txt", header = TRUE)

> attach(AlloyData, warn.conflicts = FALSE)

Figure 1 shows a plot of the AlloyData showing the porportion of fasteners which failed
as a function of pressure load.

It is natural to assume that the data y1, . . . , yn (n = 10) are realisations of independent
binomial random variables Y1, . . . , Yn with Yi ∼ Bin(ni, pi) for i = 1, . . . , n. We want
to model the dependence of Yi on the ith pressure load xi, and we suppose that this
dependence is in the way that pi depends on xi. Our initial model for the data is

logit(pi) ≡ log
( pi

1− pi

)
= α + βxi, i = 1, . . . , n.

The glm function works in a similar way to the lm function, but when working with
binomial regression models in R, we need to include an argument consisting of a vector
of weights. Recalling that the dispersion parameter of the ith observation is σ2

i = σ2ai,
the ith weight is 1/ai, which is ni in our model above. R uses these weights to form the
matrix Ŵm used in the iterated weighted least squares algorithm.

> BinMod1 <- glm(y/n ~ x, family = binomial, weights = n)

As with the lm function, the output is stored as an object. You can find the many
components of this object with
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> plot(x, y/n, xlab = "pressure load", ylab = "proportion failed",

+ main = "Alloy Data, proportion of fasteners which failed")
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Figure 1: AlloyData: proportion of fasteners which failed plotted as a function of pressure
load

> names(BinMod1)

[1] "coefficients" "residuals" "fitted.values"

[4] "effects" "R" "rank"

[7] "qr" "family" "linear.predictors"

[10] "deviance" "aic" "null.deviance"

[13] "iter" "weights" "prior.weights"

[16] "df.residual" "df.null" "y"
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[19] "converged" "boundary" "model"

[22] "call" "formula" "terms"

[25] "data" "offset" "control"

[28] "method" "contrasts" "xlevels"

but most of the relevant information can be accessed simultaneously with

> summary(BinMod1)

Call:

glm(formula = y/n ~ x, family = binomial, weights = n)

Deviance Residuals:

Min 1Q Median 3Q Max

-0.29475 -0.11129 0.04162 0.08847 0.35016

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.3397115 0.5456932 -9.785 <2e-16 ***

x 0.0015484 0.0001575 9.829 <2e-16 ***

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 112.83207 on 9 degrees of freedom

Residual deviance: 0.37192 on 8 degrees of freedom

AIC: 49.088

Number of Fisher Scoring iterations: 3

An example sheet question asks you to verify the calculations leading to the values given
for standard errors, z-values and residual deviance in the summary. What approximation
is used to compute the standard errors?

Is pressure load significant in explaining the failure of alloy fasteners? The quantity
p/(1 − p) is called the odds of success, where, in this example, success is the failure of a
fastener. How does the log odds change as the pressure load increases by 1 psi?
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The null deviance compares the unrestricted model in which Y1, . . . , Yn are independent
with Yi ∼ Bin(ni, pi), with the ‘null’ model, with pi constant for i = 1, . . . , n, i.e.,
log{pi/(1− pi)} = α.

For binomial regression, the log-likelihood function is

`(p, σ2) =
n∑

i=1

log

{(
ni

yi

)
pyi

i (1− pi)
ni−yi

}
,

where p = (p1, . . . , pn) and σ2 = 1. In the unrestricted model, the m.l.e. of pi is p̃i = yi/ni,
whereas in the null model, it is p̄ =

∑
yi/

∑
ni. So the null deviance is defined as

D(p̃, p̄) = 2σ2
[
`(p̃, σ2)− `(p̄, σ2)

]
.

In R, this is computed by

> 2 * (sum(dbinom(y, n, y/n, log = TRUE)) - sum(dbinom(y, n,

+ mean(y)/mean(n), log = TRUE)))

[1] 112.8321

The residual deviance (simply called the deviance in lectures) compares the unrestricted
model with the model we are primarily interested in, namely the logistic regression model
with log{pi/(1− pi)} = α + βxi. Let p̂i denote the m.l.e. in this logistic model. Then the
residual deviance is given by

D(p̃, p̂) = 2σ2
[
`(p̃, σ2)− `(p̂, σ2)

]
,

and it is computed in R by

> beta <- coef(BinMod1)

> X <- model.matrix(y/n ~ x)

> p.hat <- exp(X %*% beta)/(1 + exp(X %*% beta))

> 2 * (sum(dbinom(y, n, y/n, log = TRUE)) - sum(dbinom(y, n,

+ p.hat, log = TRUE)))

[1] 0.3719169
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Recall that, since the dispersion parameter σ2 = 1 for this binomial situation, the residual
deviance is the likelihood ratio statistic for testing our logistic regression model against
the unrestricted model, and has an approximate χ2

n−p distribution (cf. the discussion of
small dispersion asymptotics) if our logistic regression model is correct. In this example
n− p = 8. Is the fit of the model satisfactory? What p-value do you obtain?

The penultimate piece of information in the summary is the Akaike information criterion
(AIC). This is defined up to an additive constant as

AIC = −2`(p̂, σ̂2) + 2p,

where p is the dimension of the parameter space in the model (here p = 2 as we have two
unknown parameters, α and β), and p̂, σ̂ are the m.l.e. estimates returned by Iterated
Weighted Least Squares algorithm. In comparing different models, one criterion is to seek
to minimise the AIC – notice the trade-off between maximising the log-likelihood and
keeping the dimension of the parameter space small.

The final part of the summary tells us the number of Fisher scoring iterations required for
the difference between successive iterations to be satisfactorily small. The boot library
contains logit and inverse logit functions, so we can see our fitted model.

> plot(x, y/n, xlab = "pressure load", ylab = "proportion failed",

+ main = "Fitted Alloy Data, proportion of fasteners which failed")

> library(boot)

> lines(x, inv.logit(coef(BinMod1)[[1]] + coef(BinMod1)[[2]] *

+ x))

> lines(x, fitted.values(BinMod1), col = 2)

The last line above should have the same effect. Figure 2 shows the result.

EXERCISES:

� Write down the equation of the curve being plotted in the last line.

� The probit link function is g(µ) = Φ−1(µ), while the complementary log-log function
is g(µ) = log{− log(1− µ)}. Write down the models that are being fitted with the
following commands, compare the summaries with the first model, and add the
fitted lines to your plots, with dotted and dashed lines respectively.

> BinMod2 <- glm(y/n ~ x, family = binomial(link = probit),

+ weights = n)

> BinMod3 <- glm(y/n ~ x, family = binomial(link = cloglog),

+ weights = n)
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Figure 2: Fit of the AlloyData.

� The next data set is SpaceData, contained in space.txt on the course web page.
Download the data, read the information about the data and then read the table
into R with read.table. Plot the points and fit a logistic regression model to the
data (you will need to define a vector of length 23 with each component equal to
6). Add the fitted line to your plot. Although the experimental design is far from
perfect (how would you improve it?), what would you conclude?

� Look at the discussion in the original data file of the conclusions reached by the
NASA staff. How is your model affected if you omit the points with no failures
using the subset=(y>0) argument to the glm function?
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