
STATISTICAL MODELLING Part IIC

Practical 1: Introduction to R IAC/Lent 2011

Comments and corrections to ioana@statslab.cam.ac.uk

A reminder before you start: Please don’t ever turn off the computers in this
room when you log out.

The following must be done at the beginning of each session:

1. Log in using your PWF password.

2. Create a directory called Rwork inside the U: drive. I.e.,

(a) Open the U: drive by double–clicking on the icon at the top–left of your Desktop
called My Documents (Drive U).

(b) Inside the window that opens up, right–click and select New Folder.

(c) Name the new folder Rwork.

3. Start R. The launcher for R is located in the Start menu.

All Programs → Spreadsheets Mathematics and Statistics

→ R Statistical Data Analysis 2.11.1

Statslab users on Unix machines need only type R from the command prompt in your
home (or other) directory.

Note that R is free software. Precompiled binary distributions are available from www.r-

project.org for Windows and Max OS X, and the nearest mirror site for downloading a
copy is http://www.stats.bris.ac.uk/R/. Source code is available for other architec-
tures. You are encouraged to install R on your home computer, and to download some of
the R documentation. Follow the Manuals link in the left hand column under the heading
Documentation. Download An Introduction to R. It provides a good reference at a level
suitable for new users.

Many of these practicals are too long and involved to be completed in the 1–hour time–slot
allotted. When this happens, you should feel obliged to complete the sheet, and exercises,
at home or in the lab on your own time. Treat the exercises at the end of these sheets as
mini example sheets, and bring them to your supervisions.

1



R can be used as a calculator:

> sqrt(14) * exp(-5) * choose(5, 2)/(log(4 * pi) + gamma(5))

[1] 0.009502494

In this example, the symbol > is the R prompt, and the [1] states that the answer is
starting at the first element of a vector. Note that scalars are vectors containing only a
single element. We have just used some of R’s built-in functions: sqrt, exp, choose, log,
and gamma. Help on any R function can be found by typing a question mark followed by
the function, e.g.,

> ?choose

(The instance choose(5,2) returns
(
5
2

)
.) Alternatively, type at the prompt: help(choose).

For a feature specified by special characters and in a few other cases (one is “function”),
the argument must must be enclosed in single or double quotes. For example, to get help
using the arithmetic operator + use one of the following: help("+") or ?"+".

You will need to use this help facility extensively (and get used to skim-reading to find
the relevant bit!). If using Unix, pressing q exits the help window. Sometimes there is
more detailed information on functions available by typing help.start(), which has a
search engine, amongst other things. Previous commands can be accessed by hitting the
up arrow key. Note that R is case-sensitive.

Also note that R includes some useful constants, for instance pi. One that is a little bit
tricky is e; use exp(1).

In R, basic commands are generally either assignments or expressions. When an expression
is given, it is evaluated, printed, then discarded. An assignment is evaluated and the value
is stored as a variable, but is not automatically printed. The <- symbol is the assignment
operator in R. For instance:

� We can assign the value 3 to the variable x, and then perform operations on x:

> x <- 3

> round(x^2 - log10(x), 3)

[1] 8.523

2



> 37%/%x

[1] 12

> 37%%x

[1] 1

� The c() function combines values into a vector or list.

> x <- c(3, 6, 4, 2)

> x

[1] 3 6 4 2

> length(x)

[1] 4

You can create a vector y with the same entries using y <- scan(). Enter one
component per line and leave a blank line after the last. Try this! The function
scan can also read data in from files. See the help file for details.

One of the first things to get used to is the way in which operations on vectors in R are
performed component by component. This often avoids the need to write loops and can
decrease the running time of algorithms. For example:

� scalar–vector multiplication and addition:

> 4 * x + 3

[1] 15 27 19 11

� creating sequences:

> 1:8

[1] 1 2 3 4 5 6 7 8

a:b is a special case of seq; see also rep

� creating matrices:

3



> A <- matrix(1:8, nrow = 2, ncol = 4, byrow = FALSE)

> A

[,1] [,2] [,3] [,4]

[1,] 1 3 5 7

[2,] 2 4 6 8

Can you use matrix to enter the terms by row instead?

� matrix–vector multiplication is done with %*%; component–wise multiplication with
*; transposes are accomplished with t().

> A %*% x

[,1]

[1,] 55

[2,] 70

> A * A

[,1] [,2] [,3] [,4]

[1,] 1 9 25 49

[2,] 4 16 36 64

> t(A)

[,1] [,2]

[1,] 1 2

[2,] 3 4

[3,] 5 6

[4,] 7 8

� solve(A) returns the inverse of matrix A. What does solve(A,b) return?

> solve(A %*% t(A))

[,1] [,2]

[1,] 1.50 -1.25

[2,] -1.25 1.05

� means of each row of A:

> apply(A, 1, mean)

4



[1] 4 5

How would you find the mean of each column?

Components of a vector or matrix can be extracted:

� by giving indeces to specify the components

> x[2]

[1] 6

> A[2, 3]

[1] 6

> x[1:3]

[1] 3 6 4

> x[-2]

[1] 3 4 2

� by giving a vector of True/False indicating which component to be returned. The
binary operator < performs component-wise comparison.

> x < 4

[1] TRUE FALSE FALSE TRUE

> x[x <= 4]

[1] 3 4 2

> x[x <= 5 & x > 2]

[1] 3 4

� The following use the convention True = 1, False = 0; note the == which is needed
for logical comparisons. What is !=?

> sum(x == 4)

5



[1] 1

> sum(x != 4)

[1] 3

Vectors can be sorted via the function sort.

� The following sorts in increasing order. How about decreasing order?

> x <- c(3, 7, 2, 4, 1, 9)

> sort(x)

[1] 1 2 3 4 7 9

� What do the following functions do?

> sort.list(x)

[1] 5 3 1 4 2 6

> x[sort.list(x)]

[1] 1 2 3 4 7 9

> x[sort.list(-x)]

[1] 9 7 4 3 2 1

Lists collect together items of different types, and names can be specified for different
items.

� For example

> Empl <- list(employee = "Eve", spouse = "Adam", children = 2,

+ child.ages = c(4, 7))

> Empl

6



$employee

[1] "Eve"

$spouse

[1] "Adam"

$children

[1] 2

$child.ages

[1] 4 7

Elements of a list need not be of the same length, but its components are numbered.
Thus Empl is a list of length 4, and its components are referred to as Empl[[1]],
etc. Notice that Empl[[4]] is a vector, so Empl[[4]][1] is its first entry.

� Names of components can also be used to extract components.

> Empl$employee

[1] "Eve"

> Empl$child.ages[2]

[1] 7

Random numbers are generated with commands like rnorm, runif, rbeta, etc. The
corresponding density, cumulative distribution and quantile functions are, e.g., dnorm,
pnorm, qnorm. What do the functions summary and sample do?

> X <- rnorm(20, mean = 1, sd = 2)

> X

[1] 4.9378785 -0.3023774 -0.9520653 -0.6871562 -2.2990575 1.4725558

[7] 1.2549242 -1.1559552 1.2298580 1.1707465 2.6901323 1.4570274

[13] 0.9238759 0.8895438 2.9912317 4.3533328 1.1513152 2.8999520

[19] -2.1080259 -1.3379341

> summary(X)

7



Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.2990 -0.7534 1.1610 0.9290 1.7770 4.9380

> sample(X, 15, replace = T)

[1] -1.1559552 4.3533328 4.3533328 1.2549242 -0.9520653 2.8999520

[7] 2.6901323 -0.3023774 4.9378785 1.4570274 2.8999520 -1.3379341

[13] -1.3379341 1.2549242 -1.1559552

EXERCISES:

1. What is the upper 5% point of a χ2
6 distribution?

2. Use R to solve

3a + 4b− 2c + d = 9

2a− b + 7c− 2d = 13

6a + 2b− c + d = 11

a + 6b− 2c + 5d = 27.

3. Use R to estimate E(X6) when X ∼ N(0, 1).

4. With n = 10, generate X1, . . . , Xn
iid∼ N(0, 1). Now generate a bootstrap sample

from {X1, . . . , Xn}; i.e., given the data {X1, . . . , Xn}, generate independent and
identically distributed X∗

1 , . . . , X
∗
n such that each X∗

i has probability 1/n of being
Xj, for j = 1, . . . , n.

FINAL COMMENTS:

1. Escaping R: The two most common ways to get stuck in R are endless loops (or really
long computations that you didn’t intend) and unbalanced parenthesis. When you
are in the endless loop situation, the prompt looks like this

> while(TRUE) {}

|

In this situation, press Esc (in Windows or Mac OS X) or Ctrl-C (in Linux) to
cancel the currently running command and return the command prompt. When
you have unbalanced parenthesis, the prompt looks like this

8



> t <- sqrt(n) * (mean(x) - mu / std.dev(x)

+

The way out of this is to type a bunch of right parenthesis, hit return (which
generates a syntax error), then type the command again but with the parenthesis
in the right places. Typing Esc (in Windows or Mac OS X) or Ctrl-C (in Linux)
will also return you to the command prompt.

2. Exiting R: To exit R, type q(). You have the option of saving your commands and
the variables you have created. Next time you run R, you can see which objects
are in your workspace with ls(); they are deleted with rm(x), for example, or
rm(list=ls()) to clear the entire workspace.

9


