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1. (Weighted least squares) Let Y1, . . . , Yn be independent, with Yi ∼ N(µi, σ
2

i ),
where µi = xT

i β and σ2

i = σ2ai, with σ2 unknown, but a1, . . . , an known. Show
that the maximum likelihood estimator β̂ is the solution to the weighted least
squares problem of minimising (Y −Xβ)T W (Y −Xβ), where W and X should
be specified.

Deduce that β̂, which is also called the weighted least squares estimator, satisfies
β̂ = (XTWX)−1XT WY .

2. (Iterated weighted least squares) Recall that the mth iteration of the Fisher
scoring algorithm in a generalised linear model is

β̂m = β̂m−1 + i(β̂m−1)
−1U(β̂m−1).

Let Ẑm−1 = (Ẑm−1,1, . . . , Ẑm−1,n)
T , where Ẑm−1,i = η̂m−1,i+(Yi−µ̂m−1,i)g

′(µ̂m−1,i),

with η̂m−1,i = (Xβ̂m−1)i and µ̂m−1,i = g−1(η̂m−1,i), for i = 1, . . . , n. From the
expressions for U(β) and i(β) computed in Ex. Sheet 3, question 8, deduce that

β̂m = (XT Ŵm−1X)−1XTŴm−1Ẑm−1,

where Ŵm−1 is a matrix which you should specify.

3. Consider a generalised linear model with Poisson responses and the canonical
link function, with linear predictor η = (η1, . . . , ηn)T given by ηi = α + xT

i β, for
i = 1, . . . , n. Argue that the deviance may be approximated by Pearson’s χ2

statistic. Hint: if stuck, Taylor expand.

4. (Short Tripos 2005/2/5I) Below are three R commands, and the corresponding
output (which is slightly abbreviated). Explain the effects of the commands.
How is the deviance defined, and why do we have d.f.=7 in this case? Interpret
the numerical values found in the output.

> n <- c(3,5,16,12,11,34,37,51,56)

> i <- c(1,2,3,4,5,6,7,8,9)

> summary(glm(n~i,poisson))

deviance = 13.218

d.f. = 7

Coefficients:

Value Std.Error

(intercept) 1.363 0.2210

i 0.3106 0.0382
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5. Let Y = (Y1, . . . , Ym) be a random vector having independent components, with
Yi ∼ Poi(µi) for i = 1, . . . , m. Show that, conditional on

∑

Yi = n, we have
that Y ∼ Multi(n; p1, . . . , pm), where pi = µi/

∑

µj for i = 1, . . . , m.

6. (a) In a two-way contingency table, consider the hypothesis that the row in-
dex and column index of an observation are independent. Write down the
mulitnomial and surrogate Poisson models corresponding to this hypothe-
sis. Show that the fitted values from the surrogate model (so also from the
multinomial model) have the same row and column totals as the observed
values.

(b) Now consider a two-way contingency table in which the row totals are
fixed and we are interested in a hypothesis of the homogeneity of the
different rows. Write down the multinomial and surrogate Poisson model
corresponding to this hypothesis and argue again that the fitted row and
column totals respect the observed values.

In each case, explain how would you test these hypotheses, assuming that the
fitted values in each cell are not too small.

7. The data below come from a study of hypertension (high blood pressure), obe-
sity and alcohol intake in Western Australia. The alcohol categories are in
‘drinks’ per day. Read the data into R and define appropriate factors using gl.
Think about questions of interest for this data and fit appropriate models to
study these questions. What are your conclusions?

Alcohol Intake
Obesity BP 0 1-2 3-5 6+
Low Yes 5 9 8 10
Low No 40 36 33 24
Average Yes 6 9 11 14
Average No 33 23 35 30
High Yes 9 12 19 19
High No 24 25 28 29

8. (Long Tripos 2005/4/13I)

(a) Suppose that Y1, . . . , Yn are independent random variables, and that Y1

has probability density function

f(yi|β, ν) =

(

νyi

µi

)ν

e−yiν/µi
1

Γ(ν)

1

yi

for yi > 0

where
1/µi = βT xi , for 1 ≤ i ≤ n,
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and x1, . . . , xn are given p-dimensional vectors, and ν is known.

Show that E(Yi) = µi and that var(Yi) = µ2

i /ν.

(b) Find the equation for β̂, the maximum likelihood estimator of β, and
suggest an iterative scheme for its solution.

(c) If p = 2, and xi =

(

1
zi

)

, find the large-sample distribution of β̂2. Write

your answer in terms of a, b, c and ν, where a, b, c are defined by

a =
∑

µ2

i , b =
∑

ziµ
2

i , c =
∑

z2

i µ
2

i .
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