RN/Lent 2011

1. Let Y be a random variable with density $f(y;\theta)$ for $y \in \mathcal{Y} \subseteq \mathbb{R}^n$ and some $\theta \in \Theta \subseteq \mathbb{R}^d$, and write $\ell(\theta;Y)$ and $U(\theta;Y)$ for the corresponding log-likelihood and score functions. Assume that the order of differentiation with respect to a component of θ and integration over \mathcal{Y} may be interchanged where necessary. Show that, for $r, s = 1, \ldots, d$,

$$\operatorname{Cov}_{\theta}\{U_r(\theta;Y), U_s(\theta;Y)\} = -\mathbb{E}_{\theta}\Big\{\frac{\partial^2}{\partial \theta_r \partial \theta_s}\ell(\theta;Y)\Big\}.$$

- 2. Let Y_1, \ldots, Y_n be independent Poisson random variables with mean θ . Compute the maximum likelihood estimator $\hat{\theta}_n$. By considering $n\hat{\theta}_n$, write down the distribution of $\hat{\theta}_n$ and deduce its asymptotic distribution directly. Verify that this asymptotic distribution agrees with that predicted by the general asymptotic theory for maximum likelihood estimators.
- 3. Let Y_1, \ldots, Y_n be independent $Poisson(\theta)$ random variables. Show that both $\bar{Y} = n^{-1} \sum Y_i$ and $S^2 = (n-1)^{-1} \sum (Y_i \bar{Y})^2$ are unbiased estimators of θ . Without calculating $Var_{\theta}(S^2)$, argue that \bar{Y} is at least as good an estimator as S^2 .
- 4. Let Y_1, \ldots, Y_n be independent $U[0, \theta]$ random variables, for some $\theta \in \Theta = (0, \infty)$. Find the maximum likelihood estimator $\hat{\theta}_n$, as well as its distribution function, mean and variance. What is the asymptotic distribution of $n(\theta \hat{\theta}_n)/\theta$? Why does the standard theory not apply?
- 5. Consider the standard linear model $Y = X\beta + \epsilon$, where X is an $n \times p$ matrix of full rank p. Find the distribution of maximum likelihood estimator $\hat{\beta}$ of β . Calculate the Fisher information $i(\beta)$, compare it to the variance of $\hat{\beta}$ and to what the asymptotic theory predicts for $Var(\hat{\beta})$.
- 6. Bayesian Inference.
 - (a) Find the posterior distribution (up to a normalising constant) for the parameters β , σ^2 under the standard linear model in Question 6. Use the Jeffreys' prior $p(\beta, \sigma^2) \propto \sigma^{-2}$.
 - (b) Derive the posterior conditionals $p(\beta|\sigma^2, X, Y)$ and $p(\sigma^2|\beta, X, Y)$, and the posterior marginal $p(\sigma^2|X, Y)$.

- (c) Derive the posterior predictive distribution of y^* at x^* , conditional on σ^2 : $p(y^*|\sigma^2, x^*, X, Y)$.
- 7. Recall that in the standard linear model above we may express the fitted values $\hat{Y} = X\hat{\beta}$ as $\hat{Y} = PY$, where $P = X(X^{\top}X)^{-1}X^{\top}$.
 - (a) Show that P represents an orthogonal projection.
 - (b) Show that P and I P are positive semi-definite, where I is the $n \times n$ identity matrix.
 - (c) Show that I P has rank n p and P has rank p.
- 8. In the standard linear model above, find the maximum likelihood estimator $\hat{\sigma}^2$ of σ^2 , and use Cochran's theorem to find its distribution. [Hint: use the results from the previous question.]
- 9. Let $Y = X\beta + \epsilon$, where X and β are partitioned as $X = (X_0 X_1)$ and $\beta^{\top} = (\beta_0^{\top} \beta_1^{\top})$ respectively (where β_0 has p_0 components and β_1 has $p p_0$ components).
 - (a) Show that β_0 and β_1 are orthogonal if and only if the Fisher information matrix is block diagonal. [This is the appropriate generalisation of parameter orthogonality to more general parametric models.]
 - (b) Use this generalisation to show that β and σ^2 are orthogonal.
- 10. Consider the model for responses Y_1, \ldots, Y_n given by

$$Y_i = \beta_0 + \beta_1 x_i + \beta_2 P_2(x_i) + \epsilon_i,$$

where $\epsilon_1, \ldots, \epsilon_n$ are independent $N(0, \sigma^2)$ random variables, $\sum_{i=1}^n x_i = 0$, and P_2 is a monic quadratic polynomial. Find P_2 to make β_0, β_1 and β_2 mutually orthogonal. For this choice of P_2 , compute the maximum likelihood estimator $(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2)^{\top}$ and write down its distribution.

11. In the balanced, additive two-way ANOVA model, show that the maximum likelihood fitted values are $\tilde{Y}_{ijk} = \bar{Y}_{i++} + \bar{Y}_{+j+} - \bar{Y}$. [Hint: use the sum-to-zero identifiability constraints.]