Riemann Surfaces Example Sheet 2

Lent 2025

Please send any comments or corrections to me at jb128@cam.ac.uk.

- 1. Suppose that $f: \mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$ is an analytic map, thus is of the form p(z)/q(z) where p, q are coprime polynomials.
 - (i) Show how to find the degree (valence) deg(f) of f.
 - (ii) If f' denotes the derivative of the function f, show that it defines an analytic map $f': \mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$ whose degree satisfies $\deg(f) 1 \le \deg(f') \le 2 \deg(f)$. [Hint: Consider the principal parts of f at its poles.] For any value of $\deg(f) \ge 1$, give examples to demonstrate that both of these bounds can be achieved.
- 2. Let $\pi: X \to Y$ be a local homeomorphism between topological spaces and suppose that X is connected and Hausdorff. If $f: X \to X$ is a continuous map such that $\pi \circ f = \pi$, show that f has no fixed points unless it is the identity.
- 3. (i) Suppose that $f: X \to S$ is a local homeomorphism with X a connected Hausdorff topological space and S a Riemann surface. Show that X can be given the structure of a Riemann surface, under which f becomes analytic.

[You'll need some charts.]

- (ii) (For those that took IB Geometry) Now suppose that $g: R \to Y$ is a surjective local homeomorphism where Y is a Hausdorff topological space and R is a Riemann surface. Show that Y can be given the structure of a topological surface. Can Y always be made into a Riemann surface? What if g is a covering map?
- 4. Find an explicit covering map of Riemann surfaces $D \to D'$, where D denotes any open disc of \mathbb{C} and and D' denotes the same disc minus its centre.
- 5. Consider the analytic map $f: \mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$ defined by the polynomial $z^3 3z + 1$; find the branch points B of f and the corresponding multiplicities. What are the critical values? Is f a covering map? If not, how might we remove points from the domain to turn it into one?
- 6. Suppose that $f: R \to S$ is a non-constant analytic map of compact Riemann surfaces and let $B \subset R$ denote the set of branch points. Given a point $P \in S \setminus f(B)$, explain how a closed curve γ in $S \setminus f(B)$ starting and ending at P

Lent 2025

- defines a permutation of the (finite) set $f^{-1}(P)$. Show that the group obtained from all such closed curves is a transitive subgroup of the full symmetric group of the fibre $f^{-1}(P)$. What group is obtained in the previous question?
- 7. If $f: R \to S$ is a non-constant analytic map of compact Riemann surfaces, show that their genera satisfy $g(R) \ge g(S)$. Show that any non-constant analytic map between compact Riemann surfaces of the same genus g > 1 must be an analytic isomorphism. Does this last statement hold when g = 0 or 1?
- 8. Recall that an open set $U \subseteq \mathbb{C}$ is a *star domain* if there is $z_0 \in U$ such that, for every $z \in U$, the straight-line segment from z_0 to z is contained in U. Prove that every star domain is simply connected.
- 9. Suppose that $\pi: \widetilde{X} \to X$ is a covering map of path-connected topological spaces. Use the monodromy theorem to show that if X is simply connected then π is a homeomorphism.
- 10. Show that the component of the space of germs over $\mathbb{C} \setminus \{0\}$ corresponding to the complex logarithm is analytically isomorphic to the Riemann surface constructed by gluing, and hence also analytically isomorphic to \mathbb{C} . Show that the component of the space of germs over $\mathbb{C} \setminus \{-1,1\}$ corresponding to the complete analytic function $(z^2-1)^{1/2}$ is analytically isomorphic to the Riemann surface of this function which is obtained by gluing (as was exhibited informally in Section 1).
- 11. Let R denote the Riemann surface associated with the complete analytic function $\sqrt{1-\sqrt{z}}$ over $\mathbb{C} \setminus \{0\}$. Show that the projection covering map to $\mathbb{C} \setminus \{0\}$ is surjective. Find analytic continuations along homotopic curves in $\mathbb{C} \setminus$, say from 1/2 to 3/2, which have the same initial germ at 1/2 but different final germs at 3/2. Why is this consistent with the classical monodromy theorem?
- 12. Let $\pi: R \to \mathbb{C} \setminus \{1, i, -1, -i\}$ be the Riemann surface associated to the complete analytic function $(z^4 1)^{1/4}$. Describe R explicitly by a gluing construction. Assuming the fact that R may be compactified to a compact Riemann surface \overline{R} by adding finitely many points and that π may be extended to an analytic map $\overline{\pi}: \overline{R} \to \mathbb{C}_{\infty}$, find the genus of \overline{R} .

Riemann Surfaces Example sheet 2