Riemann Surfaces
 Example Sheet 3

Michaelmas 2023

Please send any comments or corrections to me at jb128@cam.ac.uk.

1. Let γ be any path in S^{2} from x_{0} to x_{1} (maybe $x_{0}=x_{1}$). Assume that γ is not constant and take any y in the image of γ with $y \neq x_{0}, x_{1}$. Suppose that D is a small open disc around y such that the closed disc \bar{D} in S^{2} misses x_{0} and x_{1}.
(i) Show that $\gamma^{-1}(D)$ is a collection of (finite or) countably many disjoint subintervals $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right), \ldots$ of $(0,1)$.
(ii) Show that $\gamma^{-1}(\{y\})$ lies in only finitely many of these intervals, say $\left(a_{1}, b_{1}\right), \ldots,\left(a_{k}, b_{k}\right)$ wlog.
(iii) For $1 \leq i \leq k$, on restricting γ to the path $\gamma_{i}:\left[a_{i}, b_{i}\right] \rightarrow S^{2}$, show that there is a homotopy of γ_{i} (fixing endpoints) to a path δ_{i} which misses y.
(iv) Conclude that there is a homotopy of γ (fixing endpoints) to a path δ that misses y and therefore S^{2} is simply connected.
2. Let f be a simply periodic analytic function on \mathbb{C} with periods \mathbb{Z}. Suppose furthermore that $f(x+i y)$ converges uniformly in x to (possibly infinite) limits as $y \rightarrow \pm \infty$. Show that $f(z)=\sum_{k=-n}^{n} a_{k} e^{2 \pi i k z}$, i.e. $f(z)$ has a finite Fourier expansion.
3. Suppose that $f: \mathbb{C} / \Lambda_{1} \rightarrow \mathbb{C} / \Lambda_{2}$ is an analytic map of complex tori and π_{j} denotes the projection map $\mathbb{C} \rightarrow \mathbb{C} / \Lambda_{j}$ for $j=1,2$. Show that there is a holomorphic map $F: \mathbb{C} \rightarrow \mathbb{C}$ such that $\pi_{2} \circ F=f \circ \pi_{1}$.
[Hint: Define F as follows. Choose a point μ in \mathbb{C} such that $\pi_{2}(\mu)=f \pi_{1}(0)$. For $z \in \mathbb{C}$, join 0 to z by a path $\gamma:[0,1] \rightarrow \mathbb{C}$, and observe that the path $f \circ \pi_{1} \circ \gamma$ in \mathbb{C} / Λ_{2} has a unique lift to a path $\tilde{\gamma}$ in \mathbb{C} with $\tilde{\gamma}(0)=\mu$. If we define $F(z)=\tilde{\gamma}(1)$, show that $F(z)$ does not depend on the path γ chosen and that F has the required properties.]
4. Let f and F be as in Question 3, and suppose that f is a conformal equivalence. Show that $F(z)=\lambda z+\mu$, for some $\lambda \in \mathbb{C}_{\star}$. Hence deduce that two analytic tori \mathbb{C} / Λ_{1} and \mathbb{C} / Λ_{2} are conformally equivalent if and only if the lattices are related by $\Lambda_{2}=\lambda \Lambda_{1}$ for some $\lambda \in \mathbb{C}_{*}$.
5. Show that two complex tori, $\mathbb{C} /\left\langle 1, \tau_{1}\right\rangle$ and $\mathbb{C} /\left\langle 1, \tau_{2}\right\rangle$, are conformally equivalent if and only if

$$
\tau_{2}= \pm \frac{a \tau_{1}+b}{c \tau_{1}+d}
$$

for some matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$.
6. Let f be a non-constant elliptic function with respect to a lattice $\Lambda \subset \mathbb{C}$, and let $P \subset \mathbb{C}$ be a fundamental parallelogram. Using the argument principle and, if necessary, slightly perturbing P, show that the number of zeros of f in P is the same as the number of poles, both counted with multiplicities.
[This is also a consequence of the valency theorem, but the point of this question is that this more direct argument via contour integration also works.]
7. Suppose a is a complex number with $|a|>1$. Show that any analytic function f on \mathbb{C}_{*} with $f(a z)=f(z)$ for all $z \in \mathbb{C}_{*}$ must be constant, but that there is a non-constant meromorphic function f on \mathbb{C}_{*} with $f(a z)=f(z)$ for all $z \in \mathbb{C}_{*}$.
8. Let $\wp(z)$ denote the Weierstrass \wp-function with respect to a lattice $\Lambda \subset \mathbb{C}$. Show that \wp satisfies the differential equation $\wp^{\prime \prime}(z)=6 \wp(z)^{2}+A$, for some constant $A \in \mathbb{C}$. Show that there are at least three points and at most five points (modulo Λ) at which \wp^{\prime} is not locally injective.
9. With notation as in the previous question, and a a complex number with $2 a \notin \Lambda$, show that the elliptic function

$$
h(z)=(\wp(z-a)-\wp(z+a))(\wp(z)-\wp(a))^{2}-\wp^{\prime}(z) \wp^{\prime}(a)
$$

has no poles on $\mathbb{C} \backslash \Lambda$. By considering the behaviour of h at $z=0$, deduce that h is constant, and show that this constant is zero.
10. Show that $\mathbb{C} \backslash\{P, Q\}$, where $P \neq Q$, is not conformally equivalent to \mathbb{C} or \mathbb{C}_{*}, and deduce that it is uniformized by the open unit disc \mathbb{D}. Show that the same is true for any domain in \mathbb{C} whose complement has more than one point.
11. Let R be a compact Riemann surface of genus g and p_{1}, \ldots, p_{n} be distinct points of R with $n \geq 1$. Show that $R \backslash\left\{p_{1}, \ldots, p_{n}\right\}$ is uniformized by the open unit disc \mathbb{D} if and only if $2 g-2+n>0$, and by \mathbb{C} if and only if $2 g-2+n=0$ or -1 .
12. Let f, g be non-constant meromorphic functions on a compact Riemann surface R. Show that there is a non-zero polynomial $P\left(w_{1}, w_{2}\right)$ such that $P(f, g)=0$.
[Hint: Suppose f, g have valencies m, n respectively, and put $d=m+n$. Show that it is possible to choose complex numbers $a_{i j}$, not all zero, such that the function

$$
\sum_{j=0}^{d} \sum_{k=0}^{d} a_{j k} f(z)^{j} g(z)^{k}
$$

has at least $\left(d^{2}+2 d\right)$ distinct zeros in R. Show that it cannot have more than d^{2} poles, and deduce that it must be identically zero on R.]

