Riemann Surfaces Example Sheet 1

Michaelmas 2023

Please send any comments or corrections to me at jb128@cam.ac.uk.

1. If A is an n by n matrix with strictly positive real entries then the Perron Frobenius theorem tells us that A has a unique eigenvalue which is largest in modulus, this eigenvalue is real and strictly positive and it occurs with multiplicity 1 . We look at a variation:
Let A be any n by n matrix over \mathbb{C} and suppose that its eigenvalues are $\lambda_{1}, \ldots, \lambda_{n}$ (possibly with repeats). Set $M=\max \left\{\left|\lambda_{1}\right|, \ldots,\left|\lambda_{n}\right|\right\}$.
For $F(z)=\sum_{j=1}^{n} \frac{M}{M-\lambda_{j} z}$, let $f(z)=\Sigma_{k=0} c_{k} z^{k}$ be the Taylor series of F around 0 .
(i) Where is F holomorphic and what is the radius of convergence of f ? Find a formula for each coefficient c_{k} in terms of $\lambda_{1}, \ldots, \lambda_{n}$ and hence in terms of the matrix A and its powers.
(ii) Now suppose that all entries of A are real and non-negative. By finding an appropriate singular point of f, show that M is an eigenvalue of A.
(iii) In this case, must M have multiplicity 1? Can A have lots of other eigenvalues with modulus M ?
2. (i) Show that the power series $f(z)=\Sigma z^{2^{n}}$ has the unit circle as a natural boundary.
[Perhaps you've done something similar on a Complex Analysis question]
(ii) The same for $g(z)=\Sigma z^{2^{n}} / 2^{n}$.
(iii) And again for $h(z)=\Sigma e^{-2^{n}} z^{4^{n}}$, but show further that each derivative $h^{(k)}$ has a continuous extension to the closed unit disc.
[Recall uniform convergence, the M-test etc?]
3. Show that the power series $f(z)=\sum_{n>1} \frac{1}{n(n-1)} z^{n}$ defines an analytic function on the unit disc D and give a closed formula for this function. Which points on the unit circle T are regular for f and which are singular? Deduce that the function element (f, D) defines a complete analytic function on the domain $\mathbb{C} \backslash\{1\}$, but does not extend to an analytic function on $\mathbb{C} \backslash\{1\}$.
4. (i) Why is there not a holomorphic function $h: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}$ with $e^{h(z)}=z$?
(ii) If T is the unit circle, can we have a continuous function $f: T \rightarrow \mathbb{C}$ with $e^{f(z)}=z$? (You could consider $f(z)+f(\bar{z})$.) The same for $r: T \rightarrow T$ with $r(z)^{2}=z$?
(iii) The unit circle T is also a multiplicative group, ignoring any topology. Show that we cannot even pick r in (ii) to be a homomorphism.
[So be wary of $1=\sqrt{1}=\sqrt{-1 \cdot-1}=\sqrt{-1} \cdot \sqrt{-1}=(\sqrt{-1})^{2}=-1$.]
5. Show directly that if (g, V) and (h, V) are both analytic continuations of (f, U) along the same path γ then $g \equiv h$ on V, so that $g(\gamma(1))=h(\gamma(1))$.
6. By considering the singularity at ∞ or otherwise, show that any injective holomorphic map $f: \mathbb{C} \rightarrow \mathbb{C}$ has the form $f(z)=a z+b$, for some $a \in \mathbb{C}_{*}$ and $b \in \mathbb{C}$. Characterise the injective analytic maps $\mathbb{C}_{\infty} \rightarrow \mathbb{C}_{\infty}$.
7. Let $D \subset \mathbb{C}$ be an open disc and u a harmonic function on D. Define a complex valued function g on D by $g=u_{x}-i u_{y}$; show that g is analytic. If z_{0} denotes the centre of the disc, define a function f on D by

$$
f(z)=u\left(z_{0}\right)+\int_{z_{0}}^{z} g(w) d w
$$

the integral being taken over the straight line segment from z_{0} to z. Show that f is analytic with $f^{\prime}=g$, and that $u=\operatorname{Re} f$.
8. Suppose u, v are harmonic functions on a Riemann surface R and $E=\{z \in$ $R: u(z)=v(z)\}$. Show that either $E=R$, or E has empty interior. Give an example to show that E does not in general consist of isolated points.
9. Let $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ and $\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$ both be sets of four distinct points in \mathbb{C}_{∞}. Show that any analytic isomorphism

$$
f: \mathbb{C}_{\infty} \backslash\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\} \rightarrow \mathbb{C}_{\infty} \backslash\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}
$$

extends to an analytic isomorphism $\mathbb{C}_{\infty} \rightarrow \mathbb{C}_{\infty}$. Using your answer to Question 6 , find a necessary and sufficient condition for $\mathbb{C} \backslash\{0,1, a\}$ to be conformally equivalent to $\mathbb{C} \backslash\{0,1, b\}$, where $a, b \in \mathbb{C} \backslash\{0,1\}$.
[Don't forget the cross ratio from IB - or was it IA ?]
10. Let $f(z)$ be the complex polynomial $z^{3}-z$; consider the subspace R of $\mathbb{C}^{2}=\mathbb{C} \times \mathbb{C}$ given by the equation $w^{2}=f(z)$, where (z, w) denote the coordinates on \mathbb{C}^{2}, and let $\pi: R \rightarrow \mathbb{C}$ be the restriction of the projection map onto the first factor. Show that R has the structure of a Riemann surface, on which π is an analytic map. Show that the projection onto the second factor is also an analytic map.

By deleting three appropriate points from R, show that π yields a covering map from the resulting Riemann surface $R_{0} \subset R$ to $\mathbb{C} \backslash\{-1,0,1\}$, and that R_{0} is analytically isomorphic to the Riemann surface (constructed by gluing) associated with the complete analytic function $\left(z^{3}-z\right)^{1 / 2}$ over $\mathbb{C} \backslash\{-1,0,1\}$.

