RIEMANN SURFACES EXAMPLES 3

G.P. Paternain Lent 2015

Comments on and/or corrections to the questions on this sheet are always welcome, and may be e-mailed to me at g.p.paternain@dpmms.cam.ac.uk. These are the same questions used by Pelham Wilson in Michaelmas 2010.

1. Suppose $\Omega \subset \mathbb{C}$ is an additive subgroup such that Ω contains only isolated points. Show that either $\Omega=\{0\}$, or $\Omega=\mathbb{Z} \omega$ for some $\omega \neq 0$, or $\Omega=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$ with $\omega_{1}, \omega_{2} \neq 0$ and $\omega_{2} / \omega_{1} \notin \mathbb{R}$.
2. Suppose that f is a simply periodic analytic function on \mathbb{C} with periods \mathbb{Z}, and that $\lim _{y \rightarrow+\infty} f(x+$ $i y)$ and $\lim _{y \rightarrow-\infty} f(x+i y)$ both exist (possibly ∞) uniformly in x. Show that $f(z)=\sum_{k=-n}^{n} a_{k} e^{2 \pi i k z}$, i.e. $f(z)$ has a finite Fourier expansion.
3. Let f be a non-constant elliptic function with respect to a lattice $\Lambda \subset \mathbb{C}$. Let $P \subset \mathbb{C}$ be a fundamental parallelogram; using the argument principle, and if necessary slightly perturbing P, show that the number of zeros of f in P is the same as the number of poles, both counted with multiplicities (in lectures, this followed by a use of the Valency theorem, but this more direct argument via contour integration also works).
4. With the notation as in the previous question, let the degree of f be n, and let a_{1}, \ldots, a_{n} denote the zeros of f in a fundamental parallelogram P, and let b_{1}, \ldots, b_{n} denote the poles (both with possible repeats). By considering the integral (if required, also slightly perturbing P)

$$
\frac{1}{2 \pi i} \int_{\partial P} z \frac{f^{\prime}(z)}{f(z)} d z
$$

show that

$$
\sum_{j=1}^{n} a_{j}-\sum_{j=1}^{n} b_{j} \in \Lambda
$$

5. Suppose a is a complex number with $|a|>1$. Show that any analytic function f on \mathbb{C}^{*} with $f(a z)=f(z)$ for all $z \in \mathbb{C}^{*}$ must be constant, but that there is a non-constant meromorphic function f on \mathbb{C}^{*} with $f(a z)=f(z)$ for all $z \in \mathbb{C}^{*}$.
6. Let $\wp(z)$ denote the Weierstrass \wp-function with respect to a lattice $\Lambda \subset \mathbb{C}$. Show that \wp satisfies the differential equation $\wp^{\prime \prime}(z)=6 \wp(z)^{2}+A$, for some constant $A \in \mathbb{C}$. Show that there are at least three points and at most five points (modulo Λ) at which \wp^{\prime} is not locally injective.
7. With notation as in the previous question, and a a complex number with $2 a \notin \Lambda$, show that the elliptic function

$$
h(z)=(\wp(z-a)-\wp(z+a))(\wp(z)-\wp(a))^{2}-\wp^{\prime}(z) \wp^{\prime}(a)
$$

has no poles on $\mathbb{C} \backslash \Lambda$. By considering the behaviour of h at $z=0$, deduce that h is constant, and show that this constant is zero.
8. Find an explicit regular covering map of Riemann surfaces $\Delta \rightarrow \Delta^{*}$, where Δ here denotes the open unit disc and Δ^{*} the punctured disc.
9. Show that $\mathbb{C} \backslash\{P, Q\}$, where $P \neq Q$, is not conformally equivalent to \mathbb{C} or \mathbb{C}^{*}, and deduce from the Uniformization theorem that it is uniformized by the open unit disc Δ. Show that the same is true for any domain in \mathbb{C} whose complement has more than one point.
10. Let R be a compact Riemann surface of genus g and P_{1}, \ldots, P_{n} be distinct points of R. Show that $R \backslash\left\{P_{1}, \ldots, P_{n}\right\}$ is uniformized by the open unit disc Δ if and only if $2 g-2+n>0$, and by \mathbb{C} if and only if $2 g-2+n=0$ or -1 .
11. Let f, g be meromorphic functions on a compact Riemann surface R. Show that there is a non-zero polynomial $P\left(w_{1}, w_{2}\right)$ such that $P(f, g)=0$.
[Hint: Suppose f, g have valencies m, n respectively, and put $d=m+n$. Show that it is possible to choose complex numbers $a_{i j}$, not all zero, such that the function

$$
\sum_{j=0}^{d} \sum_{k=0}^{d} a_{j k} f(z)^{j} g(z)^{k}
$$

has at least $\left(d^{2}+2 d\right)$ distinct zeros in R. Show that it cannot have more than d^{2} poles, and deduce that it must be identically zero on R.]
12. Prove from first principles that S^{2} is simply connected (this is not quite as trivial as it initially looks).

