
RIEMANN SURFACES EXAMPLES 2

G.P. Paternain Lent 2015

Comments on and/or corrections to the questions on this sheet are always welcome, and may be
e-mailed to me at g.p.paternain@dpmms.cam.ac.uk. These are the same questions used by Pelham
Wilson in Michaelmas 2010.

1. Let U ⊂ C be a star-domain; show that it is simply connected. [Not quite as easy as it looks!]

2. Let π : X̃ → X be a regular covering map of topological spaces; show that π is surjective. Suppose
now that X is simply connected; using the Monodromy theorem, show that π is a homeomorphism.

3. Suppose that f : C/Λ1 → C/Λ2 is an analytic map of complex tori and πj denotes the projection
map C→ C/Λj for j = 1, 2. Show that there is an analytic map F : C→ C such that π2F = fπ1.
[Hint: Define F as follows. Choose a point µ in C such that π2(µ) = fπ1(0). For z ∈ C, join 0 to z
by a path γ : [0, 1] → C, and observe that the path fπ1γ in C/Λ2 has a unique lift to a path Γ in
C with Γ(0) = µ. If we define F (z) = Γ(1), show that F (z) does not depend on the path γ chosen
and that F has the required properties.]

4. If the map f of Question 3 is a conformal equivalence, show that F (z) = λz+µ for some λ ∈ C∗.
Hence deduce that two analytic tori C/Λ1 and C/Λ2 are conformally equivalent if and only if the
lattices are related by Λ2 = λΛ1 for some λ ∈ C∗.

5. Show that complex tori C/〈1, τ1〉 and C/〈1, τ2〉 are analytically isomorphic if and only if τ2 =

±(aτ1 + b)/(cτ1 + d), for some matrix

(
a b
c d

)
∈ SL2(Z).

6. Show that the component of the space of germs over C∗ corresponding to the complex logarithm
is analytically isomorphic to the Riemann surface constructed by gluing, and hence also analytically
isomorphic to C. Show that the component of the space of germs over C \ {−1, 0, 1} corresponding
to the complete analytic function (z3 − z)1/2 is analytically isomorphic to the Riemann surface we
constructed by gluing.

[This is a rather crucial question; do it and you will understand why the abstract construction of
Riemann surfaces via the space of germs construction corresponds to the cut and paste constructions.
If you are not happy with your answer to this question, make sure that your supervisor goes through
it with you.]

7. Let R denote the Riemann surface associated with the complete analytic function
√

1−
√
z over

C∗. Show that the projection covering map to C∗ is surjective. Find analytic continuations along
homotopic curves in C∗, say from 1/2 to 3/2, which have the same initial germ at 1/2 but different
final germs at 3/2. Why is this consistent with the Classical Monodromy theorem?
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8. Consider the analytic map f : C∞ → C∞ defined by the polynomial z3 − 3z + 1; find the
ramification points of f and the corresponding ramification indices. What are the branch points?

9. Suppose that f : R→ S is an analytic map of compact Riemann surfaces, and let B ⊂ S denote
the set of branch points. Show that the map f : R \ f−1(B) → S \ B is a regular covering map.
[Hint: Similar argument to that used in the Valency theorem.] Given a point P ∈ S \B and a closed
curve γ in S \B with initial and final point P , explain how this defines a permutation of the (finite)
set f−1(P ). Show that the group obtained from all such closed curves is a transitive subgroup of
the full symmetric group of the fibre f−1(P ). What group is obtained in Question 8?

10. Let f(z) = p(z)/q(z) be a rational function on C, where p, q are coprime polynomials. Show
that f defines an analytic map f : C∞ → C∞, whose degree d is the maximum of the degrees
of p and q. If f ′ denotes the derivative of the function f , show that it defines an analytic map
f ′ : C∞ → C∞, whose degree satisfies d− 1 ≤ deg f ′ ≤ 2d. [Hint: Consider the principal parts of f
at its poles.] Give examples to demonstrate that the bounds can be achieved.

11. If f : R → S is a non-constant analytic map of compact Riemann surfaces, show that their
genera satisfy g(R) ≥ g(S). Show that any non-constant analytic map between compact Riemann
surfaces of the same genus g > 1 must be an analytic isomorphism. Does this last statement hold
when g = 0 or 1?

12. Let π : R → C \ {1, i,−1,−i} be the Riemann surface associated to the complete analytic
function (z4 − 1)1/4. Describe R explicitly by a gluing construction. Assuming the fact that R may
be compactified to a compact Riemann surface R̄ and π extended to an analytic map π̄ : R̄→ C∞,
find the genus of R̄.


