RIEMANN SURFACES EXAMPLES 3

G.P. Paternain Michaelmas 2013

Comments on and/or corrections to the questions on this sheet are always welcome, and may be e-mailed to me at g.p.paternain@dpmms.cam.ac.uk. These are the same questions used by Pelham Wilson in Michaelmas 2010.

- **1.** Suppose $\Omega \subset \mathbb{C}$ is an additive subgroup such that Ω contains only isolated points. Show that either $\Omega = \{0\}$, or $\Omega = \mathbb{Z}\omega$ for some $\omega \neq 0$, or $\Omega = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$ with $\omega_1, \omega_2 \neq 0$ and $\omega_2/\omega_1 \notin \mathbb{R}$.
- **2.** Suppose that f is a simply periodic analytic function on \mathbb{C} with periods \mathbb{Z} , and that $\lim_{y\to+\infty} f(x+iy)$ and $\lim_{y\to-\infty} f(x+iy)$ both exist (possibly ∞) uniformly in x. Show that $f(z) = \sum_{k=-n}^{n} a_k e^{2\pi i k z}$, i.e. f(z) has a finite Fourier expansion.
- 3. Let f be a non-constant elliptic function with respect to a lattice $\Lambda \subset \mathbb{C}$. Let $P \subset \mathbb{C}$ be a fundamental parallelogram; using the argument principle, and if necessary slightly perturbing P, show that the number of zeros of f in P is the same as the number of poles, both counted with multiplicities (in lectures, this followed by a use of the Valency theorem, but this more direct argument via contour integration also works).
- **4.** With the notation as in the previous question, let the degree of f be n, and let a_1, \ldots, a_n denote the zeros of f in a fundamental parallelogram P, and let b_1, \ldots, b_n denote the poles (both with possible repeats). By considering the integral (if required, also slightly perturbing P)

$$\frac{1}{2\pi i} \int_{\partial P} z \frac{f'(z)}{f(z)} dz,$$

show that

$$\sum_{j=1}^{n} a_j - \sum_{j=1}^{n} b_j \in \Lambda.$$

- **5.** Suppose a is a complex number with |a| > 1. Show that any analytic function f on \mathbb{C}^* with f(az) = f(z) for all $z \in \mathbb{C}^*$ must be constant, but that there is a non-constant meromorphic function f on \mathbb{C}^* with f(az) = f(z) for all $z \in \mathbb{C}^*$.
- **6.** Let $\wp(z)$ denote the Weierstrass \wp -function with respect to a lattice $\Lambda \subset \mathbb{C}$. Show that \wp satisfies the differential equation $\wp''(z) = 6\wp(z)^2 + A$, for some constant $A \in \mathbb{C}$. Show that there are at least three points and at most five points (modulo Λ) at which \wp' is not locally injective.
- 7. With notation as in the previous question, and a complex number with $2a \notin \Lambda$, show that the elliptic function

$$h(z) = (\wp(z-a) - \wp(z+a))(\wp(z) - \wp(a))^2 - \wp'(z)\wp'(a)$$

has no poles on $\mathbb{C} \setminus \Lambda$. By considering the behaviour of h at z = 0, deduce that h is constant, and show that this constant is zero.

- 8. Find an explicit regular covering map of Riemann surfaces $\Delta \to \Delta^*$, where Δ here denotes the open unit disc and Δ^* the punctured disc.
- **9**. Show that $\mathbb{C} \setminus \{P,Q\}$, where $P \neq Q$, is not conformally equivalent to \mathbb{C} or \mathbb{C}^* , and deduce from the Uniformization theorem that it is uniformized by the open unit disc Δ . Show that the same is true for any domain in \mathbb{C} whose complement has more than one point.
- 10. Let R be a compact Riemann surface of genus g and P_1, \ldots, P_n be distinct points of R. Show that $R \setminus \{P_1, \ldots, P_n\}$ is uniformized by the open unit disc Δ if and only if 2g 2 + n > 0, and by \mathbb{C} if and only if 2g 2 + n = 0 or -1.

11. Let f, g be meromorphic functions on a compact Riemann surface R. Show that there is a non-zero polynomial $P(w_1, w_2)$ such that P(f, g) = 0.

[Hint: Suppose f, g have valencies m, n respectively, and put d = m + n. Show that it is possible to choose complex numbers a_{ij} , not all zero, such that the function

$$\sum_{j=0}^{d} \sum_{k=0}^{d} a_{jk} f(z)^{j} g(z)^{k}$$

has at least $(d^2 + 2d)$ distinct zeros in R. Show that it cannot have more than d^2 poles, and deduce that it must be identically zero on R.]

12. Prove from first principles that S^2 is simply connected (this is not quite as trivial as it initially looks).