Part IID RIEMANN SURFACES (2012–2013) Example Sheet 2

c.birkar@dpmms.cam.ac.uk

- (1) Let $p(z, w) \in \mathbb{C}[z, w]$ be a non-constant irreducible polynomial and let X be the algebraic curve $\{(a, b) \in \mathbb{C}^2 \mid p(a, b) = 0\}$ defined by p(z, w). Show that X is not compact.
- (2) Let $X = \{(a, b) \in \mathbb{C}^2 \mid b^2 = a^2 c^2\}$, where c is a fixed non-zero complex number. Show that X is a smooth curve.

By finding the intersection point(s) of X with the complex line $\lambda(a-c)=b$, show that the map $\varphi:\mathbb{C}\setminus\{1,-1\}\to X\setminus\{(c,0)\}$ given by

$$\varphi(\lambda) = \left(c\frac{\lambda^2 + 1}{\lambda^2 - 1}, \frac{2c\lambda}{\lambda^2 - 1}\right)$$

is biholomorphic. Thus φ can be thought of as a 'parameterization' of an open subset of X.

- (3) Let $f: X \to Y$ be a continuous map between Riemann surfaces with analytic atlases $\mathcal{A} = \{(U_i, \varphi_i)\}$ and $\mathcal{B} = \{(V_\alpha, \psi_\alpha)\}$ on X and Y respectively. Prove that if f is holomorphic with respect to \mathcal{A} and \mathcal{B} , then it is so with respect to any other equivalent atlases.
- (4) Let $f: X \to Y$ and $g: Y \to Z$ be holomorphic maps between Riemann surfaces. Show that the composition map $gf: X \to Z$ is a holomorphic map.
- (5) Let $f: X \to Y$ be a map between Riemann surfaces, and $X = \bigcup_i U_i$ where U_i are open subsets. Show that f is holomorphic if and only if $f|_{U_i}: U_i \to Y$ is holomorphic for every i.
- (6) Let $f: X \to Y$ be a non-constant holomorphic map between connected Riemann surfaces.
 - (i) Show that $f^{-1}\{y\}$ is a discrete (i.e. with no accumulation points) subset of X for any $y \in Y$. In particular, if X is compact then $f^{-1}\{y\}$ is finite.
 - (ii) Suppose that $v_f(x) = m$ for some $x \in X$, and y = f(x). Prove that there are open subsets $U \subset X$ and $V \subset Y$ such that $x \in U, y \in V$, and such that $U \cap f^{-1}\{y'\}$ has m elements for any $u \neq u' \in V$.
 - (iii) Inverse mapping theorem. Suppose that $v_f(x) = 1$ for some $x \in X$. Show that there are open subsets $U \subset X$ and $V \subset Y$ such that $f|_U \colon U \to V$ is biholomorphic and $x \in U$.

- (7) Let X be a Riemann surface. A conformal equivalence $f: X \to X$ is called an automorphism of X. Prove that the set of automorphisms of X, denoted by $\operatorname{Aut}(X)$, is a group where the group operation is the composition of maps.
- (8) Prove that every $f \in \operatorname{Aut}(\mathbb{C})$ is of the form f(z) = az + b for some $a, b \in \mathbb{C}$ where $a \neq 0$.
- (9) Let X be the Riemann sphere. Show that $\operatorname{Aut}(X)$ is isomorphic to $SL(2,\mathbb{C})/\pm I$. Here $SL(2,\mathbb{C})$ is the set of 2×2 matrices over \mathbb{C} with determinant equal to 1, and $I=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- (10) (i) Prove Schwartz lemma: if $f: D(0,1) \to D(0,1)$ is holomorphic and f(0) = 0, then either |f(z)| < |z|, for every $z \in D^*(0,1)$, or $f(z) = e^{i\theta}z$, for some real θ .
 - (ii) Deduce from Schwartz lemma that any biholomorphic map of D(0,1) onto itself is a Möbius transformation (restricted to D(0,1)). You may assume without proof a result (from IB Geometry examples) that a Möbius transformation maps D(0,1) onto itself if and only if it is of the form $z\mapsto \frac{az+\bar{c}}{cz+\bar{a}}$, with $|a|^2-|c|^2=1$.

[Hint: reduce the problem to the case when a biholomorphic map of D(0,1) onto itself has a fixed point z=0.]

(iii) Define

$$SU(1,1) = \{ A \in GL(2,\mathbb{C}) \mid \det A = 1 \text{ and } A\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \} \overline{A^t} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \}.$$

Show that the group Aut D(0,1) is isomorphic to the 'projective special unitary group' $PSU(1,1) = SU(1,1)/\pm I$.

- (11) Let $f: X \to Y$ be a non-constant holomorphic map between connected Riemann surfaces. Show that the set of ramification points of f is discrete.
- (12) Consider the algebraic curve X in \mathbb{C}^2 defined by the vanishing of the polynomial $p(z,w)=w^3-z(z^2-1)$. Show that X is smooth at every point, and find the branch points of $f:X\to\mathbb{C}$ given by the first projection, i.e. f(z,w)=z. Find also the ramification points of f and the branching orders.
- (13) Let X and Y be compact connected Riemann surfaces and $f: X \to Y$ a non-constant holomorphic map. (Assume that the genus of any compact connected Riemann surface is a non-negative integer).
 - (i) Show that the genus of X is greater or equal to the genus of Y.

$$genus(X) = genus(Y) > 1$$

show that f is biholomorphic.

- (iii) Show that a holomorphic map $f \colon S^2 \to S^2$ of degree $k \geq 2$ must have branch points.
- (14) A compact connected Riemann surface X is called **hyperelliptic** if it admits a holomorphic map $f: X \to S^2$ of degree 2. Show that, for any hyperelliptic Riemann surface X, the map $g: X \to X$ determined (uniquely) by the properties $f \circ g = f$, and $g(x) \neq x$ if $v_f(x) = 1$, is holomorphic.
- (15) Let $f: S^2 \to S^2$ be a non-constant holomorphic map, with degree $d \geq 1$. Show that for all but a finite number of points $Q \in S^2$, the equation f(P) = Q has d distinct solutions P in S^2 . When does f(P) = Q have d distinct solutions for **every** Q?