Part IID RIEMANN SURFACES (2012–2013) Example Sheet 1 c.birkar@dpmms.cam.ac.uk

Some of the questions below are intended to serve as a refresher on Complex Analysis. Notation: $D(a,r) = \{z \in \mathbb{C} \mid |z-a| < r\}$ is an open disc, and $D^*(a,r) = \{z \in \mathbb{C} \mid 0 < |z-a| < r\}$ is a punctured open disc.

- (1) If $f: D^*(a, r) \to \mathbb{C}$ is holomorphic and has a pole of order n at a, show that there exist $\varepsilon > 0$ and R > 0 such that for any given wwith |w| > R, the equation f(z) = w has exactly n distinct solutions z in the punctured disc $D^*(a, \varepsilon)$.
- (2) The following is a useful generalization of the argument principle. Let D be an open disc, γ a simple closed curve in D (oriented so that the winding number $n(\gamma, a) = 1$ for a inside γ), f meromorphic, g holomorphic on D, and γ does not pass through any zeros or poles of f. Then

$$\frac{1}{2\pi i} \int_{\gamma} g(z) \frac{f'(z)}{f(z)} dz = k_1 g(z_1) + \ldots + k_m g(z_m) - \ell_1 g(w_1) - \ldots - \ell_n g(w_n),$$

where z_j are the zeros of f inside γ , and w_j are the poles of f inside γ , and k_j and ℓ_j are, respectively, their orders. Verify this result. [Hint: no need to factorize g.]

(3) Suppose that f is holomorphic on the open disc D(a, r) and g is a locally defined inverse to f at a, i.e. for all w with |w - f(a)| < δ, there is a unique g(w) such that f(g(w)) = w. Prove that for w near f(a),</p>

$$g(w) = \frac{1}{2\pi i} \int_{\gamma(a,\varepsilon)} z \frac{f'(z)}{f(z) - w} dz,$$

where $\gamma(a,\varepsilon)$ is defined by $\gamma(a,\varepsilon)(t) = a + \varepsilon e^{it}$, $0 \le t \le 2\pi$ (with a suitable $\varepsilon > 0$). [Hint: apply Q2.]

(4) Show that

$$f(z) = \sum_{n = -\infty}^{\infty} \frac{1}{(z - n)^2}$$

is holomorphic on $\mathbb{C} \setminus \mathbb{Z}$. [Hint: Use the Weierstrass M-test from Analysis II to show that f is locally uniformly convergent.]

(5) (i) Show that a bounded holomorphic function on $D^*(0,1)$ extends holomorphically to all of D(0,1).

(ii) Let $f : \mathbb{C} \to \mathbb{C}$ be holomorphic and injective (1:1). Let $F : D^*(0,1) \to \mathbb{C}$ be determined by F(z) = f(1/z). By considering $w \in f(D(0,1))$ and using the Weierstrass–Casorati Theorem, prove that 0 is at worst a pole of F.

(iii) Show that if g is holomorphic on $D^*(0, 1)$ and g(z) = w never has more than n solutions z in $D^*(0, 1)$ (n is some fixed number) then g has at 0 at worst a pole of order $\leq n$.

(6) Suppose that a holomorphic function f satisfies a polynomial equation

$$f^{n}(z) + a_{n-1}(z)f^{n-1}(z) + \ldots + a_{1}(z)f(z) + a_{0}(z) = 0$$

on a region $U \subset \mathbb{C}$, where the coefficients $a_i(z)$ are holomorphic on \mathbb{C} . Show that every analytic continuation of (U, f) also satisfies this equation.

(7) Consider the power series

$$f(z) = \sum_{n=0}^{\infty} z^{2^n} = z + z^2 + z^4 + z^8 + \dots,$$

defined on the open unit disc D(0,1). Prove that the unit circle $\gamma = \{z \in \mathbb{C} \mid |z| = 1\}$ is the natural boundary for the function element (D(0,1), f).

- (8) Let $f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n$ be a power series with convergent radius $r \in (0, \infty)$. Show that there is at least one singular point on the boundary of D(a, r).
- (9) Analytic continuation by reflections. Let f be a function which is holomorphic on the upper half-plane H and continuous on H ∪ I, where I ⊂ R is an open interval. Suppose that f(z) ∈ R whenever z ∈ I. Prove that f(z) = f(z), for Im(z) < 0, defines an analytic continuation of f to C \ (R \ I).
 [Hint: it is convenient to use Morera's theorem from IB Complex Analysis. At some stage, consider a sequence of contours γ_n(t), such that the γ_n's converge uniformly with first derivatives to a contour γ(t) containing a subinterval of I ⊂ R.]
- (10) Show that the unit disc D(0,1) and the upper half plane $\mathbb{H} = \{z \in \mathbb{C} \mid \text{Im}(z) > 0\}$ are conformally equivalent.

- (11) Show, by considering the unit disc D(0, 1) and the complex plane \mathbb{C} , that homeomorphic Riemann surfaces need not be conformally equivalent (biholomorphic).
- (12) Show that no two of the following regions in \mathbb{C} are conformally equivalent

• $\{z \in \mathbb{C} \mid 1 < |z| < 2\},\$

• $\{z \in \mathbb{C} \mid 0 < |z| < 1\},\$

• $\{z \in \mathbb{C} \mid 0 < |z| < \infty\}$

where the complex structures on these sets are those inherited from the usual complex structure on \mathbb{C} .

(13) (i) Let X and Y be Riemann surfaces, $f : X \to Y$ a continuous map, and p a point in X. Show, directly from the definition of holomorphic maps, that if f is holomorphic on $X \setminus \{p\}$ then f is in fact holomorphic on all of X.

(ii) Suppose that each of $A = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$ and $B = \{\beta_1, \beta_2, \beta_3, \beta_4\}$ is a set of four distinct points in S^2 and $f : S^2 \setminus A \to S^2 \setminus B$ is a biholomorphic map. Show that f extends to a biholomorphic map of S^2 onto itself.

(14) Show that if X and Y are Riemann surfaces such that both are connected, X is compact and Y is **non-compact** then every holomorphic map $f: X \to Y$ is constant.