Example Sheet 1

(1) Let $U=\mathbf{C} \backslash([-1,0] \cup[1, \infty))$ and let γ be a closed curve in U. Using standard properties of winding numbers, show that (i) $n(\gamma, 1)=0$, and (ii) $n(\gamma, 0)=n(\gamma,-1)$.
(2) Let $P\left(w_{0}, w_{1}, \ldots, w_{s} ; z\right)$ be a polynomial in the $s+1$ complex variables $w_{0}, w_{1}, \ldots, w_{s}$, where the coefficients of P are holomorphic on \mathbf{C}. Thus

$$
P\left(f(z), f^{(1)}(z), \ldots, f^{(s)}(z) ; z\right)=0
$$

is a differential equation, which we abbreviate to $P(f)=0$. If (f, D) is a function element with $P(f)=0$ in D and if $\left(g, D^{\prime}\right) \approx(f, D)$ is an analytic continuation, then show that $P(g)=0$ in D^{\prime}. Give an example of a differential equation and function elements as above, where $D^{\prime}=D$ but $g \neq f$ on D.
(3) Let $\pi: \tilde{X} \rightarrow X$ be a covering map of topological spaces (recalling here that the spaces are assumed connected and Hausdorff), and $f: \tilde{X} \rightarrow \tilde{X}$ a continuous map such that $\pi f=\pi$. Show that f has no fixed points unless it is the identity.
(4) Show that the power series $f(z)=\sum_{n>1} \frac{1}{n(n-1)} z^{n}$ defines an analytic function $(1-z) \log (1-z)+z$ on the unit disc D. Deduce that the function element (f, D) defines a complete analytic function on $\mathbf{C} \backslash\{1\}$, but does not extend to an analytic function on $\mathbf{C} \backslash\{1\}$.
(5) Show that the power series $f(z)=\sum z^{2^{n}} / 2^{n}$ has the unit circle as a natural boundary.
(6) Show that atlases being equivalent is an equivalence relation on the set of atlases. Show that any conformal structure on a Riemann surface contains a maximal atlas.
(7) Let T be the complex torus $\mathbf{C} /\langle 1, \tau\rangle$, and let $Q_{1} \subset \mathbf{C}$ be the open parallelogram with vertices $0,1, \tau, 1+\tau$, and Q_{2} the translation of Q_{1} by $(1+\tau) / 2$. Let U_{1}, U_{2} denote the open subsets of T given by projection of Q_{1}, Q_{2} respectively, and let $\phi_{1}: U_{1} \rightarrow Q_{1}$, $\phi_{2}: U_{2} \rightarrow Q_{2}$ be the charts obtained by taking the inverse maps. Describe explicitly the transition function

$$
\phi_{2} \phi_{1}^{-1}: \phi_{1}\left(U_{1} \cap U_{2}\right) \rightarrow \phi_{2}\left(U_{1} \cap U_{2}\right) .
$$

(8) By considering the singularity at ∞ or otherwise, show that any injective analytic map $f: \mathbf{C} \rightarrow \mathbf{C}$ has the form $f(z)=a z+b$, for some $a \in \mathbf{C}^{*}$ and $b \in \mathbf{C}$. Find the injective analytic maps $\mathbf{C}_{\infty} \rightarrow \mathbf{C}_{\infty}$.
(9) Let $\Lambda=\left\langle\tau_{1}, \tau_{2}\right\rangle$ be a lattice in \mathbf{C} and let $T=\mathbf{C} / \Lambda$ be the corresponding complex torus. Let Λ^{\prime} denote the lattice $\left\langle 1, \tau_{2} / \tau_{1}\right\rangle$ and $T^{\prime}=\mathbf{C} / \Lambda^{\prime}$. Show that the Riemann surfaces T and T^{\prime} are analytically isomorphic (i.e. conformally equivalent).
(10) Define an equivalence relation \sim on \mathbf{C}^{*} by $z \sim w$ iff $z=2^{s} w$ for some $s \in \mathbf{Z}$. Show that the quotient space $R=\mathbf{C}^{*} / \sim$ has the natural structure of a compact Riemann surface, and that R is analytically isomorphic to a complex torus.
(11) (The identity principle for Riemann surfaces) Let R, S be Riemann surfaces, and $f, g: R \rightarrow S$ be analytic maps between them. Set $E=\{z \in R: f(z)=g(z)\}$; show that either $E=R$ or E contains only isolated points.
(12) Let $D \subset \mathbf{C}$ be an open disc and u a harmonic function on D. Define a complex valued function g on D by $g=u_{x}-i u_{y}$; show that g is analytic. If z_{0} denotes the centre of the disc, define a function f on D by

$$
f(z)=u\left(z_{0}\right)+\int_{z_{0}}^{z} g
$$

the integral being taken over the straight line segment. Show that f is analytic with $f^{\prime}=g$, and that $u=\operatorname{Re} f$.
(13) Suppose u, v are harmonic functions on a Riemann surface R and $E=\{z \in R$: $u(z)=v(z)\}$. Show that either $E=R$, or E has empty interior. Give an example to show that E does not in general consist of isolated points.
(14) Let $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ and $\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$ both be sets of four distinct points in \mathbf{C}_{∞}. Show that any analytic isomorphism

$$
f: \mathbf{C}_{\infty} \backslash\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\} \rightarrow \mathbf{C}_{\infty} \backslash\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}
$$

extends to an analytic isomorphism $\mathbf{C}_{\infty} \rightarrow \mathbf{C}_{\infty}$. Using your answer to question 8, find a necessary and sufficient condition for $\mathbf{C} \backslash\{0,1, a\}$ to be conformally equivalent to $\mathbf{C} \backslash\{0,1, b\}$, where a, b are complex numbers distinct from 0 and 1 .
(15) Let $f(z)$ be the complex polynomial $z^{3}-z$; consider the subspace R of $\mathbf{C}^{2}=\mathbf{C} \times \mathbf{C}$ given by the equation $w^{2}=f(z)$, where (z, w) denote the coordinates on \mathbf{C}^{2}, and let $\pi: R \rightarrow \mathbf{C}$ be the restriction of the projection map onto the first factor. Show that R has the structure of a Riemann surface, on which π is an analytic map. If g denotes the projection onto the second factor, show that g is also an analytic map.

By deleting three appropriate points from R, show that π yields a covering map from the resulting Riemann surface $R_{0} \subset R$ to $\mathbf{C} \backslash\{-1,0,1\}$, and that R_{0} is analytically isomorphic to the Riemann surface (constructed by gluing) associated with the complete analytic function $\left(z^{3}-z\right)^{1 / 2}$ over $\mathbf{C} \backslash\{-1,0,1\}$.
(16) Let $f(z)=\sum a_{n} z^{n}$ be a power series of radius of convergence 1 , and for w in the open unit disc, set $\rho(w)$ to be the radius of convergence for the power series expansion about w (so that $\rho(0)=1$). Show that a point $\zeta \in C(0,1)$ on the unit circle is regular if and only if $\rho(\zeta / 2)>\frac{1}{2}$. Suppose furthermore that all the a_{n} are non-negative real numbers. If $\zeta \in C(0,1)$, show that $\left|f^{(r)}(\zeta / 2)\right| \leq f^{(r)}(1 / 2)$ for all r, and hence that $\rho(\zeta / 2) \geq \rho(1 / 2)$. Deduce that 1 is a singular point.

