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(1) Determine the topology on the Riemann sphere C ∪ {∞}, that is,
determine the open subsets.

(2) Let p(z, w) ∈ C[z, w] be a non-constant irreducible polynomial and
let X be the algebraic curve {(a, b) ∈ C2 | p(a, b) = 0} defined by
p(z, w). Show that X is not compact.

(3) Let X = {(a, b) ∈ C2 | b2 = a2 − c2}, where c is a fixed non-zero
complex number. Show that X is a smooth curve.

By finding the intersection point(s) of X with the complex line
λ(a− c) = b, show that the map ϕ : C \ {1,−1} → X \ {(c, 0)} given
by

ϕ(λ) =

(

c
λ2 + 1

λ2 − 1
,

2cλ

λ2 − 1

)

is biholomorphic. Thus ϕ can be thought of as a ‘parameterization’
of an open subset of X.

(4) Let f : X → Y be a continuous map between Riemann surfaces with
analytic atlases A = {(Ui, ϕi)} and B = {(Vα, ψα)} on X and Y
respectively. Prove that if f is holomorphic with respect to A and
B, then it is so with respect to any other equivalent atlases.

(5) Let f : X → Y and g : Y → Z be holomorphic maps between Rie-
mann surfaces. Show that the composition map gf : X → Z is a
holomorphic map.

(6) Let f : X → Y be a map between Riemann surfaces, and X =
⋃

i Ui

where Ui are open subsets. Show that f is holomorphic if and only
if f |Ui

: Ui → Y is holomorphic for every i.

(7) Let f : X → Y be a non-constant holomorphic map between con-
nected Riemann surfaces.

(i) Show that f−1{y} is a discrete (i.e. with no accumulation
points) subset of X for any y ∈ Y . In particular, if X is compact
then f−1{y} is finite.

(ii) Suppose that vf (x) = m for some x ∈ X, and y = f(x).
Prove that there are open subsets U ⊂ X and V ⊂ Y such that
x ∈ U, y ∈ V , and such that U ∩ f−1{y′} has m elements for any
y 6= y′ ∈ V .



(iii) Inverse mapping theorem. Suppose that vf (x) = 1 for some
x ∈ X. Show that there are open subsets U ⊂ X and V ⊂ Y such
that f |U : U → V is biholomorphic and x ∈ U .

(8) Let X be a Riemann surface. A conformal equivalence f : X → X is
called an automorphism of X. Prove that the set of automorphisms
of X, denoted by Aut(X), is a group where the group operation is
the composition of maps.

(9) Prove that every f ∈ Aut(C) is of the form f(z) = az + b for some
a, b ∈ C where a 6= 0.

(10) Let X be the Riemann sphere. Show that Aut(X) is isomorphic to
SL(2,C)/±I. Here SL(2,C) is the set of 2×2 matrices over C with
determinant equal to 1, and I =

(

1 0
0 1

)

.

(11) (i) Prove Schwartz lemma: if f : D(0, 1)→ D(0, 1) is holomorphic
and f(0) = 0, then either |f(z)| < |z|, for every z ∈ D∗(0, 1), or
f(z) = eiθz, for some real θ.

(ii) Deduce from Schwartz lemma that any biholomorphic map of
D(0, 1) onto itself is a Möbius transformation (restricted to D(0, 1)).
You may assume without proof a result (from IB Geometry exam-
ples) that a Möbius transformation maps D(0, 1) onto itself if and

only if it is of the form z 7→
az + c̄

cz + ā
, with |a|2 − |c|2 = 1.

[Hint: reduce the problem to the case when a biholomorphic map of
D(0, 1) onto itself has a fixed point z = 0.]

(iii) Define

SU(1, 1) =
{

A ∈ GL(2,C) | detA = 1 and A
(

1 0
0 −1

)

At =
(

1 0
0 −1

)}

.

Show that the group AutD(0, 1) is isomorphic to the ‘projective spe-
cial unitary group’ PSU(1, 1) = SU(1, 1)/± I.

(12) Let f : X → Y be a non-constant holomorphic map between con-
nected Riemann surfaces. Show that the set of ramification points
of f is discrete.

(13) Consider the algebraic curve X in C2 defined by the vanishing of
the polynomial p(z, w) = w3 − z(z2 − 1). Show that X is smooth at
every point, and find the branch points of f : X → C given by the
first projection, i.e. f(z, w) = z. Find also the ramification points
of f and the branching orders.

(14) Let X and Y be compact connected Riemann surfaces and f : X →
Y a non-constant holomorphic map. (Assume that the genus of any



compact connected Riemann surface is a non-negative integer).

(i) Show that the genus of X is greater or equal to the genus of Y .
(ii) If

genus(X) = genus(Y ) > 1

show that f is biholomorphic.
(iii) Show that a holomorphic map f : S2 → S2 of degree k ≥ 2

must have branch points.

(15) A compact connected Riemann surface X is called hyperelliptic if
it admits a holomorphic map f : X → S2 of degree 2. Show that,
for any hyperelliptic Riemann surface X, the map g : X → X de-
termined (uniquely) by the properties f ◦ g = f , and g(x) 6= x if
vf (x) = 1, is holomorphic.

(16) Let f : S2 → S2 be a non-constant holomorphic map, with degree
d ≥ 1. Show that for all but a finite number of points Q ∈ S2, the
equation f(P ) = Q has d distinct solutions P in S2. When does
f(P ) = Q have d distinct solutions for every Q?

(17) Analytic continuation by reflections. Let f be a function which is
holomorphic on the upper half-plane H and continuous on H ∪ I,
where I ⊂ R is an open interval. Suppose that f(z) ∈ R whenever

z ∈ I. Prove that f(z) = f(z̄), for Im(z) < 0, defines an analytic
continuation of f to C \ (R \ I).
[Hint: it is convenient to use Morera’s theorem from IB Complex
Analysis. At some stage, consider a sequence of contours γn(t), such
that the γn’s converge uniformly with first derivatives to a contour
γ(t) containing a subinterval of I ⊂ R.]


