Part IID RIEMANN SURFACES (2008-2009): Example

 Sheet 1Some of the questions below are intended to serve as a refresher on Complex Analysis. Notation: $D(a, r)=\{z \in \mathbb{C}| | z-a \mid<r\}$ is an open disc, and $D^{*}(a, r)=\{z \in \mathbb{C}|0<|z-a|<r\}$ is a punctured open disc.
(1) If $f: D^{*}(a, r) \rightarrow \mathbb{C}$ is holomorphic and has a pole of order n at a, show that there exist $\varepsilon>0$ and $R>0$ such that for any given w with $|w|>R$, the equation $f(z)=w$ has exactly n distinct solutions z in the punctured disc $D^{*}(a, \varepsilon)$.
(2) The following is a useful generalization of the argument principle. Let D be an open disc, γ a simple closed curve in D (oriented so that the winding number $n(\gamma, a)=1$ for a inside γ), f meromorphic, g holomorphic on D, and γ does not pass through any zeros or poles of f. Then

$$
\frac{1}{2 \pi i} \int_{\gamma} g(z) \frac{f^{\prime}(z)}{f(z)} d z=k_{1} g\left(z_{1}\right)+\ldots+k_{m} g\left(z_{m}\right)-\ell_{1} g\left(w_{1}\right)-\ldots-\ell_{n} g\left(w_{n}\right)
$$

where z_{j} are the zeros of f inside γ, and w_{j} are the poles of f inside γ, and k_{j} and ℓ_{j} are, respectively, their orders. Verify this result. [Hint: no need to factorize g.]
(3) Suppose that f is holomorphic on the open disc $D(a, r)$ and g is a locally defined inverse to f at a, i.e. for all w with $|w-f(a)|<\delta$, there is a unique $g(w)$ such that $f(g(w))=w$. Prove that for w near $f(a)$,

$$
g(w)=\frac{1}{2 \pi i} \int_{\gamma(a, \varepsilon)} z \frac{f^{\prime}(z)}{f(z)-w} d z,
$$

where $\gamma(a, \varepsilon)$ is defined by $\gamma(a, \varepsilon)(t)=a+\varepsilon e^{i t}, 0 \leq t \leq 2 \pi$ (with a suitable $\varepsilon>0$).
[Hint: apply Q2.]
(4) Show that

$$
f(z)=\sum_{n=-\infty}^{\infty} \frac{1}{(z-n)^{2}}
$$

is holomorphic on $\mathbb{C} \backslash \mathbb{Z}$. [Hint: Use the Weierstrass M-test from Analysis II to show that f is locally uniformly convergent.]
(5) (i) Show that a bounded holomorphic function on $D^{*}(0,1)$ extends holomorphically to all of $D(0,1)$.
(ii) Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be holomorphic and injective (1:1). Let F : $D^{*}(0,1) \rightarrow \mathbb{C}$ be determined by $F(z)=f(1 / z)$. By considering $w \in f(D(0,1))$ and using the Weierstrass-Casorati Theorem, prove that 0 is at worst a pole of F.
(iii) Show that if g is holomorphic on $D^{*}(0,1)$ and $g(z)=w$ never has more than n solutions z in $D^{*}(0,1)$ (n is some fixed number) then g has at 0 at worst a pole of order $\leq n$.
(6) Find the Fourier series expansion for $\frac{1}{\sin 2 \pi z}$ valid in the region $\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}$ and also Fourier series expansion valid in the region $\{z \in \mathbb{C} \mid \operatorname{Im}(z)<0\}$.
[You may use any results you know about Laurent expansions.]
(7) Suppose that a holomorphic function f satisfies a polynomial equation

$$
f^{n}(z)+a_{n-1}(z) f^{n-1}(z)+\ldots+a_{1}(z) f(z)+a_{0}(z)=0
$$

on a region $U \subset \mathbb{C}$, where the coefficients $a_{i}(z)$ are holomorphic on \mathbb{C}. Show that every analytic continuation of (U, f) also satisfies this equation.
(8) Consider the power series

$$
f(z)=\sum_{n=0}^{\infty} z^{2^{n}}=z+z^{2}+z^{4}+z^{8}+\ldots
$$

defined on the open unit disc $D(0,1)$. Prove that the unit circle $\gamma=\{z \in \mathbb{C}| | z \mid=1\}$ is the natural boundary for the function element $(D(0,1), f)$.
(9) * Let $f(z)=\sum_{n=0}^{\infty} c_{n}(z-a)^{n}$ be a power series with convergent radius $r \in(0, \infty)$. Show that there is at least one singular point on the boundary of $D(a, r)$.
(10) Show that the unit disc $D(0,1)$ and the upper half plane $\mathbb{H}=\{z \in$ $\mathbb{C} \mid \operatorname{Im}(z)>0\}$ are conformally equivalent.
(11) Show, by considering the unit disc $D(0,1)$ and the complex plane \mathbb{C}, that homeomorphic Riemann surfaces need not be conformally equivalent (biholomorphic).
(12) Show that no two of the following regions in \mathbb{C} are conformally equivalent

- $\{z \in \mathbb{C}|1<|z|<2\}$,
- $\{z \in \mathbb{C}|0<|z|<1\}$,
- $\{z \in \mathbb{C}|0<|z|<\infty\}$
where the complex structures on these sets are those inherited from the usual complex structure on \mathbb{C}.
(13) (i) Let X and Y be Riemann surfaces, $f: X \rightarrow Y$ a continuous map, and p a point in X. Show, directly from the definition of holomorphic maps, that if f is holomorphic on $X \backslash\{p\}$ then f is in fact holomorphic on all of X.
(ii) Suppose that each of $A=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\}$ and $B=\left\{\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right\}$ is a set of four distinct points in S^{2} and $f: S^{2} \backslash A \rightarrow S^{2} \backslash B$ is a biholomorphic map. Show that f extends to a biholomorphic map of S^{2} onto itself.
(14) Show that if X and Y are Riemann surfaces such that both are connected, X is compact and Y is non-compact then every holomorphic map $f: X \rightarrow Y$ is constant.

