Part IID RIEMANN SURFACES (2007-2008): Example Sheet 3

> (a.g.kovalev@dpmms.cam.ac.uk)

1. Show that for any non-constant complex polynomial $P(s, t)$, the set $\left\{(s, t) \in \mathbb{C}^{2}: P(s, t)=0\right\}$ is unbounded. (Thus any algebraic curve in \mathbb{C}^{2} is non-compact.)
2. Let $S_{0}=\left\{(s, t) \in \mathbb{C}^{2}: t^{2}=s^{2}-a^{2}\right\}$, where a is a fixed non-zero complex number. Show that S_{0} is a non-singular curve.

By finding the intersection point(s) of S_{0} with the complex line $\lambda(s-a)=t$, show that the $\operatorname{map} \varphi: \mathbb{C} \backslash\{1,-1\} \rightarrow S_{0} \backslash\{(a, 0)\}$ given by

$$
\varphi(\lambda)=\left(a \frac{\lambda^{2}+1}{\lambda^{2}-1}, \frac{2 a \lambda}{\lambda^{2}-1}\right)
$$

is biholomorphic. Thus φ can be thought of as a 'parameterization' of an open subset in S_{0}.
3. Identify the non-singular projective curve S so that S_{0} is biholomorphic to an open subset $\{X: Y: Z \in S \mid X \neq 0\}$ and write down the points of $S \backslash S_{0}$ (the points at 'infinity' of S).
Show that φ (as defined in Question 2) extends to a holomorphic map $\varphi: \mathbb{C} \rightarrow S$. Determine $\varphi(z)$, for $z= \pm 1$, and $\varphi(\mathbb{C})$.
Finally, identify \mathbb{C} as $\mathbb{P}^{1}-\{1: 0\}$ via $\lambda \mapsto \lambda: 1$ and show, by further extending φ, that S is biholomorphic to the Riemann sphere.
[Hint: verifying that φ extends continuously to \mathbb{P}^{1} will suffice - explain why.]
4. (Projective transformations.) Show that any linear isomorphism $A \in G L(3, \mathbb{C})$ induces a homeomorphism (still to be denoted by A) of the projective plane \mathbb{P}^{2} onto itself. When do $A, B \in G L(3, \mathbb{C})$ induce the same map on \mathbb{P}^{2} ?
5. Let $E=\mathbb{C} / \Lambda$ be the elliptic curve defined by a lattice Λ and write $E_{0}=E \backslash\{\Lambda\}$ for the complement of the coset of Λ. Show that

$$
\Phi: z+\Lambda \in E_{0} \rightarrow\left(\wp(z), \wp^{\prime}(z)\right) \in \mathbb{C}^{2}
$$

maps the punctured elliptic curve E_{0} biholomorphically onto a non-singular algebraic curve in \mathbb{C}^{2}.

Show further that Φ extends to a biholomorphic map of E onto a non-singular projective curve $\{P(X, Y, Z)=0\}$, for a certain homogeneous cubic polynomial P.
[Hint: the differential equation for \wp.]
6. (Hyperelliptic involution.) A compact Riemann surface S is called hyperelliptic if it admits a meromorphic function $f: S \rightarrow \mathbb{P}^{1}$ of degree 2 . Show that, for any hyperelliptic Riemann surface S, the map $a: S \rightarrow S$ determined (uniquely) by the properties $f \circ a=f$, and $a(x) \neq x$ if $v_{f}(x)=1$, is holomorphic.
7. Consider the complex algebraic curve C in \mathbb{C}^{2} defined by the vanishing of the polynomial $P(s, t)=t^{3}-s\left(s^{2}-1\right)$. Show that C is non-singular and find the branch locus of the branched cover $f: C \rightarrow \mathbb{C}$ given by the first projection. Find also the ramification points of f and the branching orders.
8.* Analyze a compactification of the curve C of Question 7 along the following lines.
(i) For $|z|>1$, show that there exists a holomorphic function $h(z)$ such that $h(z)^{3}=1-z^{-2}$, $h(z) \rightarrow 1$ as $|z| \rightarrow \infty$.
(ii) Deduce, by writing the equation for C in the form $t^{3}=(s \cdot h(s))^{3}$, that $C \cap\left\{(s, t) \in \mathbb{C}^{2}:|s|>1\right\}=C_{1} \cup C_{2} \cup C_{3}$, where the C_{j} are pairwise disjoint and the restriction of f to C_{j} gives a biholomorphic map to $\{s \in \mathbb{C}:|s|>1\}$.
(iii) Hence show that there exists a compact Riemann surface $R=C \cup\left\{\infty_{1}\right\} \cup\left\{\infty_{2}\right\} \cup\left\{\infty_{3}\right\}$ together with a holomorphic map F from R to the Riemann sphere $\mathbb{C} \cup\{\infty\}$, such that the restriction of F to C is f and $F\left(\infty_{j}\right)=\infty(j=1,2,3)$.

Now find the genus of the surface R.
9. Prove that two divisors on the Riemann sphere are linearly equivalent if and only if they have the same degree.
10. Let D be an effective divisor on \mathbb{P}^{1}. Show, directly from the definition of ℓ, that $\ell(D)=\operatorname{deg} D+1$.
11. The curves in this question are assumed to be connected. Suppose that C is a non-singular complex projective curve and P a point in C with $\ell(P)>1$. If $f \in \mathscr{L}(P)$ is non-constant, show that the map $\alpha: x \in C \rightarrow f(x): 1 \in \mathbb{P}^{1}$ is biholomorphic. $(\alpha(x)=1: 0$ if x is a pole of f.) Show further that if D is an effective non-zero divisor on a non-singular complex projective curve not biholomorphic to \mathbb{P}^{1} then $\ell(D) \leq \operatorname{deg} D$.
12. Let φ and ψ denote the charts on the Riemann sphere S^{2} defined by the stereographic projections from, respectively, the North and South poles.
(i) Regarding the differential $d z$ on \mathbb{C} as a local expression for a differential on S^{2} with respect to φ, determine the corresponding local expression for this differential with respect to ψ. Hence show that $d z$ extends to a meromorphic differential on the Riemann sphere and has a pole at 'infinity'. Find the order of this pole.
(ii) More generally, if $(z-a)^{n} d z(a \in \mathbb{C}, n \in \mathbb{Z})$ is a formula for a meromorphic differential $\omega_{a, n}$ on S^{2} relative to φ give the formula for this differential relative to ψ. Write down the divisor of $\omega_{a, n}$.
(iii) Show also that there are no non-zero holomorphic differentials on S^{2}.

Does the holomorphic differential $e^{z} d z$ on \mathbb{C} extend to a meromorphic differential on the Riemann sphere? Justify your answer.
13. Show that the differential $d z$ on \mathbb{C} induces a well-defined holomorphic differential η on an elliptic curve \mathbb{C} / Λ, via the standard charts given by local inverses of the quotient map $\mathbb{C} \rightarrow \mathbb{C} / \Lambda$. Find a pair of meromorphic functions f and g on \mathbb{C} / Λ, so that $\eta=f d g$.

Would it be possible to choose $f=1$?
14.* (for enthusiasts) Verify the Riemann-Roch theorem for the special cases of the Riemann sphere and an elliptic curve. You may assume results of any of the above questions.

