Part IID RIEMANN SURFACES (2005-2006): Example Sheet 1

> (a.g.kovalev@dpmms.cam.ac.uk)

There is a partial overlap between some of the first few questions and the example sheets on IB Complex Analysis given by Dr Demoulini last year. This is intended as a refresher on Complex Analysis, but any part that you have already done may of course be skipped now.

1. (i) If $f: D^{*}(a, r) \rightarrow \mathbb{C}$ is holomorphic and has a pole of order n at a, show that there exist $\varepsilon>0$ and $R>0$ such that for any given w with $|w|>R$, the equation $f(z)=w$ has exactly n distinct solutions z in the punctured disc $D^{*}(a, \varepsilon)=\{z \in \mathbb{C}: 0<|z-a|<\varepsilon\}$.
(ii) What is the valency of $f(z)=\cos z$ at $z=0$? Find explicitly the local conformal equivalence $\zeta(z)$ such that $f(z)=1+(\zeta(z))^{2}$. [Hint: recall the double-angle formulae.]
(iii) Suppose that f is holomorphic near the point a. Show that the valency of f at a is greater than 1 if and only if $f^{\prime}(a)=0$. More precisely, show that $v_{f}(a)=m$ if and only if

$$
f^{(k)}(a)=0 \text { for } k=1, \ldots, m-1, \quad f^{(m)}(a) \neq 0
$$

2. The following is a useful generalization of the argument principle. Let D be an open disc, γ a simple closed curve in D (oriented so that $n(\gamma, a)=1$ for a inside γ), f meromorphic, g holomorphic on D, and γ does not pass through any zeros or poles of f. Then

$$
\frac{1}{2 \pi i} \int_{\gamma} g(z) \frac{f^{\prime}(z)}{f(z)} d z=k_{1} g\left(z_{1}\right)+\ldots+k_{m} g\left(z_{m}\right)-\ell_{1} g\left(w_{1}\right)-\ldots-\ell_{n} g\left(w_{n}\right)
$$

where z_{j} are the zeros of f inside γ, and w_{j} are the poles of f inside γ, and k_{j} and ℓ_{j} are, respectively, their orders. Verify this result. [Hint: no need to factorize g.]
3. Suppose that f is holomorphic on the closed disc $\overline{D(a, r)}$ and g is a locally defined inverse to f at a, i.e. for all w with $|w-f(a)|<\delta$, there is a unique $g(w)$ such that $f(g(w))=w$. Prove that

$$
g(w)=\frac{1}{2 \pi i} \int_{\gamma(a, \varepsilon)} z \frac{f^{\prime}(z)}{f(z)-w} d z
$$

where $\gamma(a, \varepsilon)$ is defined by $\gamma(a, \varepsilon)(t)=a+\varepsilon e^{i t}, 0 \leq t \leq 2 \pi$ (with small radius ε).
[Hint: apply Q2.]
4. Show that
(i) $f(z)=\sum_{n=-\infty}^{\infty} \frac{1}{(z-n)^{2}}$ is holomorphic on $\mathbb{C} \backslash \mathbb{Z}$.
$(\text { ii })^{*} g(z)=\sum_{m, n=-\infty}^{\infty} \frac{1}{(z-n-m i)^{3}}$ is holomorphic on $\mathbb{C} \backslash \Lambda$, where $\Lambda=\{n+m i: m, n \in \mathbb{Z}\}$.
[Hint: Use the Weierstrass M-test from Analysis II to show that these series are locally uniformly convergent.]
5. (i) Show that a bounded holomorphic function on Δ^{*} extends holomorphically to all of Δ. (Here $\Delta=\{z \in \mathbb{C}:|z|<1\}, \quad \Delta^{*}=\Delta-\{0\}$.)
(ii) Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be holomorphic and injective (1:1). Let $F: \Delta^{*} \rightarrow \mathbb{C}$ be determined by $F(z)=f(1 / z)$. By considering $w \in f(\Delta)$ and using the Weierstrass-Casorati Theorem, prove that 0 is at worst a pole of F and therefore f extends holomorphically to S^{2}.
(iii) Show that if f is holomorphic on Δ^{*} and $f(z)=w$ never has more than n solutions z in Δ^{*} (n is some fixed number) then f has at 0 at worst a pole of order $\leq n$.
6. (i) Show that the group of Möbius transformations is isomorphic to $S L(2, \mathbb{C}) / \pm 1$.
(ii) Assuming the results of Q5(ii), deduce that the group $\operatorname{Aut}(\mathbb{C})$ of biholomorphic maps of the complex plane onto itself consists of maps of the form $f(z)=a z+b \quad(a \neq 0)$.
7. Let $F: S^{2} \rightarrow S^{2}$ be holomorphic and non-constant, with degree $d \geq 1$. Show that for all but a finite number of values $Q \in S^{2}$, the equation $F(P)=Q$ has d distinct solutions P in S^{2}. When does $F(P)=Q$ have d distinct solutions for every Q ?
8. If f is a rational map of degree d what are the possible degrees for its derivative f^{\prime} ?
9. Find the Fourier series expansion for $\frac{1}{\sin 2 \pi z}$ valid in the region $\{z: \operatorname{Im} z>0\}$ and also

Fourier series expansion valid in the region $\{z: \operatorname{Im} z<0\}$.
[You may use any results you know about Laurent expansions.]
In the following questions, $\mathbf{e}(z)=\exp (2 \pi i z)$ and $\vartheta(z, \tau)=\sum_{n=-\infty}^{\infty} \mathbf{e}\left(\frac{1}{2} n^{2} \tau+n z\right), \operatorname{Im} \tau>0$ (as in the lectures). Notation $\vartheta(z)$ means that τ is fixed.
10. Let $\varphi(x, t)=\vartheta(x, i t)$. Show that φ satisfies the heat equation

$$
\frac{\partial \varphi}{\partial t}=\frac{1}{4 \pi} \frac{\partial^{2} \varphi}{\partial x^{2}}
$$

(any formal manipulation of the series should be briefly justified).
11. Let $\psi(z)=\sum_{n=-\infty}^{\infty} \mathbf{e}\left(\frac{1}{2}\left(n+\frac{1}{2}\right)^{2} \tau+\left(n+\frac{1}{2}\right)\left(z+\frac{1}{2}\right)\right) \quad(\tau$ is fixed, $\operatorname{Im} \tau>0)$. Show that

$$
\psi(z+1)=-\psi(z), \quad \psi(z+\tau)=-\mathbf{e}\left(-\frac{\tau}{2}-z\right) \psi(z)
$$

and that

$$
\psi(z)=-\psi(-z) .
$$

Deduce that $\psi(0)=0$ and that $\psi(z)=0$ if and only if $z=n+m \tau$ for some integers n and m. Prove also that

$$
\vartheta\left(z+\frac{1}{2}+\frac{\tau}{2}\right)=-i \mathbf{e}\left(-\frac{\tau}{8}-\frac{z}{2}\right) \psi(z) .
$$

12. What is the residue at $\frac{1}{2}+\frac{\tau}{2}$ of $\frac{d}{d z} \log \vartheta=\frac{\vartheta^{\prime}}{\vartheta}$? Show that if

$$
f(z)=\frac{d}{d z} \log \vartheta(z-a)
$$

then

$$
f(z+1)=f(z), \quad f(z+\tau)=f(z)-2 \pi i .
$$

Deduce that if $\lambda_{1}, \ldots, \lambda_{n}$ and a_{1}, \ldots, a_{n} are complex numbers then

$$
\lambda_{1} \frac{d}{d z} \log \vartheta\left(z-a_{1}\right)+\ldots+\lambda_{n} \frac{d}{d z} \log \vartheta\left(z-a_{n}\right)
$$

is an elliptic meromorphic function if and only if $\lambda_{1}+\ldots+\lambda_{n}=0$. (This is yet another result analogous to the expansion of a rational function in partial fractions.)

