Part IIB RIEMANN SURFACES (2004–2005): Example Sheet 2

(a.g.kovalev@dpmms.cam.ac.uk)

1. If f is a meromorphic doubly-periodic (i.e. elliptic) function of degree k>0 show that f'is an elliptic function whose degree ℓ satisfies $k+1 \leq \ell \leq 2k$. Give examples to show that both bounds are attained.

Recall from example sheet 1: $\psi(z,\tau) = \sum_{n=-\infty}^{\infty} \mathbf{e}(\frac{1}{2}(n+\frac{1}{2})^2\tau + (n+\frac{1}{2})(z+\frac{1}{2}))$ and satisfies $\psi(z+1) = -\psi(z), \ \psi(z+\tau) = -\mathbf{e}(-\frac{\tau}{2}-z)\psi(z), \text{ where } \mathbf{e}(z) = \exp(2\pi i z), \ \psi(z) = -\psi(-z),$ and has unique zero 'modulo the lattice $\mathbb{Z} + \tau \mathbb{Z}$ '.

2. (i) Prove that if $z, w \in \mathbb{C}$, then

$$\wp(z) - \wp(w) = -\psi'(0)^2 \frac{\psi(z-w)\psi(z+w)}{\psi(z)^2 \psi(w)^2}.$$

Hint: Regarding one of w,z as parameter, prove that each side is Λ -periodic in the other variable and has same zeros and poles. Get multiplicative constant by considering Laurent expansion at zero.

- (ii) Deduce that $\wp'(z) = -\psi'(0)^3 \frac{\psi(2z)}{\psi(z)^4}$ and recover from this formula the zeros of \wp' .
- **3.** Let $\chi(z) = \psi'(z)/\psi(z)$. Differentiate 2(i) and interchange z and w to obtain:

$$\frac{1}{2} \frac{\wp'(z) - \wp'(w)}{\wp(z) - \wp(w)} = \chi(z+w) - \chi(z) - \chi(w).$$

Remark for readers of Ahlfors or Jones & Singerman: their σ and ζ are not quite the same as ψ and χ here, but for some constants $A, B, \sigma(z) = \exp(Az^2 + B)\psi(z)$, so $\zeta(z) = 2Az + \chi(z)$.

4.* (challenging but feasible) Prove the addition formula for \wp ,

$$\wp(z+w) = -\wp(z) - \wp(w) + \frac{1}{4} \left(\frac{\wp'(z) - \wp'(w)}{\wp(z) - \wp(w)} \right)^2.$$

You will need to differentiate the formula in Q3 and use the differential equation satisfied by \wp to eliminate \wp'' . Note also that $\wp = a - \chi'$, for some constant $a \in \mathbb{C}$ (can you see why?).]

5.* Elliptic functions may be thought of as generalizations of trigonometric functions. To make this more precise, consider $\psi(z,it)$ for t>0. Show that for each fixed z,

$$\exp(\pi t/4)\psi(z,it) \to -2\sin(\pi z)$$
, as $t \to \infty$.

This suggests the replacement

 $\psi(z, it)$ by $\psi_{\infty}(z) = -2\sin \pi z$,

$$\chi(z,it)$$
 by $\chi_{\infty}(z) = \psi_{\infty}'(z)/\psi_{\infty}(z) = \pi \cot \pi z$.

$$\chi(z, it)$$
 by $\chi_{\infty}(z) = \psi'_{\infty}(z)/\psi_{\infty}(z) = \pi \cot \pi z$, $\wp(z, it)$ by $\wp_{\infty}(z) = \text{const} - \chi'_{\infty}(z) = \text{const} + \pi^2/\sin^2 \pi z$.

Verify that in order that
$$\wp_{\infty}(z) = 1/z^2 + z^2$$
 (holomorphic function near zero), we must have $\wp_{\infty}(z) = \frac{\pi^2}{\sin^2 \pi z} - \frac{\pi^2}{3}$.

Verify also that \wp_{∞} satisfies the differential equation for \wp for suitable values of E_4 and E_6 (find these values!).

6. Show that any holomorphic map f of degree 2 from an elliptic curve \mathbb{C}/Λ to S^2 is given by a 'Möbius transformation of a shifted \wp -function':

$$f(z) = \frac{a\wp(z - z_0) + b}{c\wp(z - z_0) + d},$$

for some $a, b, c, d, z_0 \in \mathbb{C}$.

7. Show, by considering the unit disc Δ and the complex plane \mathbb{C} , that homeomorphic Riemann surfaces need not be conformally equivalent (biholomorphic). Show that no two of the following domains are conformally equivalent

$$\{z: 1<|z|<2\}, \qquad \{z: 0<|z|<1\}, \qquad \{z: 0<|z|<\infty\}.$$

- **8.** (i) Let R and S be some Riemann surfaces, $f: R \to S$ a continuous map, and p a point in R. Show, directly from the definition of holomorphic maps, that if f is holomorphic on $R \setminus \{p\}$ then f is in fact holomorphic on all of R.
- (ii) Suppose that each of $A = \{\alpha_1, \alpha_2, \alpha_2, \alpha_4\}$ and $B = \{\beta_1, \beta_2, \beta_3, \beta_4\}$ is a set of four distinct points in S^2 and $F: S^2 \setminus A \to S^2 \setminus B$ is a biholomorphic map. Show that F extends to a biholomorphic map of S^2 onto itself, hence the β_4 is determined by the other β_i 's and α_j 's.
- **9.** Show that if R and S are Riemann surfaces such that both are connected, R is compact and S is **non-compact** then every holomorphic map $f: R \to S$ is constant.
- **10.** (i) Let R and S be compact connected Riemann surfaces and $g: R \to S$ a non-constant holomorphic map. Show that the genus of R is greater or equal to the genus of S.
 - (ii) Let R and S be compact connected Riemann surfaces, such that

$$genus(R) = genus(S) = g.$$

Show that if $f: R \to S$ is a non-constant holomorphic map and g > 1 then f is biholomorphic. What does the argument give in the case when (a) g = 0 or (b) g = 1?

- (iii) Show that a holomorphic map $f: S^2 \to S^2$ of degree $k \geq 2$ must have ramification points (i.e. points $p \in S^2$ with $v_f(p) > 1$); recover from this fact the answer to Q7 in example sheet 1.
- 11. (i) Let f and g be two elliptic functions (same lattice of periods) and N a positive integer. By considering the poles of f and g, estimate from above the dimension of the complex vector space spanned by $f(z)^m g(z)^n$, for $0 \le m, n \le N$. Deduce that when N is sufficiently large there must be a non-trivial linear dependence,

$$\sum_{m,n=0}^{N} a_{m,n} f(z)^m g(z)^n \equiv 0, \quad \text{for some } a_{m,n} \in \mathbb{C}.$$

Hence show that any two meromorphic functions f, g on an elliptic curve \mathbb{C}/Λ are 'algebraically related': there is a polynomial Q in two variables, so that Q(f(z), g(z)) = 0 for all z.

- (ii)* Show that the argument of (i) works for meromorphic functions on **any compact** Riemann surface.
- **12.** Recall from the Lectures that $\vartheta(z,\tau) = \sum_{n=-\infty}^{\infty} \mathbf{e}(\frac{1}{2}n^2\tau + nz)$, where $\mathbf{e}(z) = \exp(2\pi iz)$ and $\operatorname{Im}(\tau) > 0$. Show that if k is a positive integer then $\vartheta(0,\tau)^k = \sum_{n=0}^{\infty} r_n(k)e^{\pi ni\tau}$, where $r_n(k)$ is the number of ways to express the integer n as a sum of k squares.