Part IIB RIEMANN SURFACES (2003-2004): Example Sheet 2

(a.g.kovalev@dpmms.cam.ac.uk)

1. If f is a meromorphic doubly-periodic (i.e. elliptic) function of degree $k>0$ show that f^{\prime} is elliptic and that its degree ℓ satisfies $k+1 \leq \ell \leq 2 k$. Give examples to show that both bounds are attained.

Recall from example sheet 1: $\psi(z, \tau)=\sum_{n=-\infty}^{\infty} \mathbf{e}\left(\frac{1}{2}\left(n+\frac{1}{2}\right)^{2} \tau+\left(n+\frac{1}{2}\right)\left(z+\frac{1}{2}\right)\right)$ and satisfies $\psi(z+1)=-\psi(z), \quad \psi(z+\tau)=-\mathbf{e}\left(-\frac{\tau}{2}-z\right) \psi(z)$, where $\mathbf{e}(z)=\exp (2 \pi i z), \quad \psi(z)=-\psi(-z)$, and has unique zero 'modulo the lattice $\{n+\tau m\}$ '.
2. (i) Prove that if $z, w \in \mathbb{C}$, then

$$
\wp(z)-\wp(w)=-\psi^{\prime}(0)^{2} \frac{\psi(z-w) \psi(z+w)}{\psi(z)^{2} \psi(w)^{2}}
$$

[Hint: Regarding one of w, z as parameter, prove that each side is Λ-periodic in the other variable and has same zeros and poles. Get multiplicative constant by considering Laurent expansion at zero.]
(ii) Deduce that $\wp^{\prime}(z)=-\psi^{\prime}(0)^{3} \frac{\psi(2 z)}{\psi(z)^{4}}$ and recover from this formula the zeros of \wp^{\prime}.
3. Let $\chi(z)=\psi^{\prime}(z) / \psi(z)$. Differentiate 2(i) and interchange z and w to obtain:

$$
\frac{1}{2} \frac{\wp^{\prime}(z)-\wp^{\prime}(w)}{\wp(z)-\wp(w)}=\chi(z+w)-\chi(z)-\chi(w)
$$

Remark for readers of Ahlfors or Jones \& Singerman: their σ and ζ are not quite the same as ψ and χ, but for some constants $A, B, \sigma(z)=\exp \left(A z^{2}+B\right) \psi(z)$, so $\zeta(z)=2 A z+\chi(z)$.
4.* Prove the addition formula for \wp,

$$
\wp(z+w)=-\wp(z)-\wp(w)+\frac{1}{4}\left(\frac{\wp^{\prime}(z)-\wp^{\prime}(w)}{\wp(z)-\wp(w)}\right)^{2} .
$$

[You will need to differentiate the formula in Q3 and use the differential equation satisfied by \wp to eliminate $\wp^{\prime \prime}$.]
5.* Elliptic functions may be thought of as generalizations of trigonometric functions. To make this more precise, consider $\psi(z, i t)$ for $t>0$. Show that for each fixed z,

$$
\exp (\pi t / 4) \psi(z, i t) \rightarrow-2 \sin (\pi z), \text { as } t \rightarrow \infty
$$

This suggests the replacement

```
\(\psi(z, i t)\) by \(\psi_{\infty}(z)=-2 \sin \pi z\),
\(\chi(z, i t)\) by \(\chi_{\infty}(z)=\psi_{\infty}^{\prime}(z) / \psi_{\infty}(z)=\pi \cot \pi z\),
\(\wp(z, i t)\) by \(\wp_{\infty}(z)=\) const \(-\chi_{\infty}^{\prime}(z)=\mathrm{const}+\pi^{2} / \sin ^{2} \pi z\).
```

Verify that in order that $\wp_{\infty}(z)=1 / z^{2}+z^{2} \cdot$ (holomorphic function near zero),
we must have $\wp_{\infty}(z)=\frac{\pi^{2}}{\sin ^{2} \pi z}-\frac{\pi^{2}}{3}$.
Verify also that \wp_{∞} satisfies the differential equation for \wp for suitable values of E_{4} and E_{6} (find these values!).
6. Show, by considering the unit disc Δ and the complex plane \mathbb{C}, that homeomorphic Riemann surfaces need not be conformally equivalent (biholomorphic).
Show that no two of the following domains are conformally equivalent

$$
\{z: 1<|z|<2\}, \quad\{z: 0<|z|<1\}, \quad\{z: 0<|z|<\infty\} .
$$

7. Show that if R and S are Riemann surfaces such that both are connected, R is compact and S is non-compact then every holomorphic map $f: R \rightarrow S$ is constant.
8. (i) Let R and S be compact connected Riemann surfaces and $g: R \rightarrow S$ a non-constant holomorphic map. Show that the genus of R is greater or equal to the genus of S.
(ii) Let R and S be compact connected Riemann surfaces, such that

$$
\operatorname{genus}(R)=\operatorname{genus}(S)=g .
$$

Show that if $f: R \rightarrow S$ is a non-constant holomorphic map and $g>1$ then f is biholomorphic. What does the argument give in the case when (a) $g=0$ or (b) $g=1$?
(iii) Show that a holomorphic map $f: S^{2} \rightarrow S^{2}$ of degree $k \geq 2$ must have ramification points (i.e. points $p \in S^{2}$ with $v_{f}(p)>1$); recover from this fact the answer to Q7 in example sheet 1.
9. (i) Prove Schwartz lemma: if $f: \Delta \rightarrow \Delta$ is holomorphic and $f(0)=0$ then either $|f(z)|<|z|$, for every $z \in \Delta$, or $f(z)=e^{i \theta} z$, for some real θ. Here $\Delta=\{z \in \mathbb{C}:|z|<1\}$. [Hint: consider the function $g(z)=f(z) / z$ and apply the maximum modulus principle to $g(z)$ on the closed discs $\{|z| \leq 1-\epsilon\}$, for any small $\epsilon>0$.]
(ii) Deduce from Schwartz lemma that any biholomorphic map of Δ onto itself is a Möbius transformation (restricted to Δ). You may assume without proof a result (from IB Geometry examples) that a Möbius transformation maps Δ onto itself if and only if it is of the form $z \mapsto \frac{a z+\bar{c}}{c z+\bar{a}}$, with $|a|^{2}-|c|^{2}=1$.
[Hint: reduce the problem to the case when a biholomorphic map of Δ onto itself has a fixed point $z=0$.]
(iii) The group $S U(1,1)$ is defined as the group of complex 2×2 matrices preserving the standard Hermitian form of signature $(1,1)$ on \mathbb{C}^{2}, i.e.

$$
S U(1,1)=\left\{A \in G L(2, \mathbb{C}): \operatorname{det} A=1 \text { and } A\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \overline{A^{t}}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\right\} .
$$

Show that the group Aut Δ of biholomorphic automorphisms of the open unit disc Δ is isomorphic to a 'projective special unitary group' $\operatorname{PSU}(1,1)=S U(1,1) / \pm 1$.
(Compare with Q6 of example sheet 1.)
10. (i) Let f and g be two elliptic functions (same lattice of periods) and N a positive integer. By considering the poles of f and g, estimate from above the dimension of the complex vector space spanned by $f(z)^{m} g(z)^{n}$, for $0 \leq m, n, \leq N$. Deduce that when N is sufficiently large there must be a non-trivial linear dependence,

$$
\sum_{m, n=0}^{N} a_{m, n} f(z)^{m} g(z)^{n} \equiv 0, \quad \text { for some } a_{m, n} \in \mathbb{C}
$$

Hence show that any two meromorphic functions f, g on an elliptic curve \mathbb{C} / Λ are 'algebraically related': there is a polynomial Q in two variables, so that $Q(f(z), g(z))=0$ for all z.
(ii)* show that the argument of (i) in fact works on any compact Riemann surface.

