

Representation Theory — Examples Sheet 3

On this sheet all groups are finite and all representations are complex representations

1. Let V, W be finite dimensional vector spaces over k . Choose bases for V and W , and show that under the resulting identification of $V \otimes W$ with matrices the image of $\otimes: V \times W \rightarrow V \otimes W$ consists of *precisely* the matrices of rank ≤ 1 .
2. Calculate S^2V and Λ^2V for the two-dimensional irreducible representations of D_8 and of Q_8 . Which has the trivial representation as a subrepresentation in each case?
3. Find an isomorphism from $k[X] \rightarrow k[X]^*$. Find an isomorphism between $k[H \backslash G] \rightarrow k[G/H]$ (right to left cosets).
4. List the cosets $S_{a+b}/(S_a \times S_b)$, and the double cosets $(S_a \times S_b) \backslash S_{a+b}/(S_a \times S_b)$.
5. Show both directly and using characters that if U, V and W are representations of G then

$$V^* \otimes W \cong \text{Hom}_k(V, W) \text{ and } \text{Hom}_k(V \otimes W, U) \cong \text{Hom}_k(V, \text{Hom}_k(W, U))$$

as representations of G . Deduce that if V is self-dual then either S^2V or Λ^2V contains a non-zero subrepresentation with trivial G -action.

6. Suppose $\rho: G \rightarrow GL(V)$ is an irreducible representation of G with character χ . By considering $V \otimes V$, S^2V and Λ^2V show that

$$\frac{1}{|G|} \sum_{g \in G} \chi(g^2) = \begin{cases} 0 & \text{if } \chi \text{ is not real-valued} \\ \pm 1 & \text{if } \chi \text{ is real valued.} \end{cases}$$

Deduce that if $|G|$ is odd then G has only one real-valued irreducible character.

7. Let $\rho: G \rightarrow GL(V)$ be a representation of G of dimension d .
 - (a) Compute $\dim S^n V$ and $\dim \Lambda^n V$ for all n .
 - (b) Let $g \in G$ and $\lambda_1, \dots, \lambda_d$ be the eigenvalues of $\rho(g)$. What are the eigenvalues of g on $S^n V$ and $\Lambda^n V$?
 - (c) Let $f(t) = \det(tI - \rho(g))$ be the characteristic polynomial of $\rho(g)$. What is the relationship between the coefficients of f and $\chi_{\Lambda^n V}$?
 - (d) What is the relationship between $\chi_{S^n V}(g)$ and f ? (Hint: start with case $d = 1$).
8. Recall the character table of D_{10} from sheet 2. Explain how to view D_{10} as a subgroup of A_5 and then use induction from D_{10} to A_5 to reconstruct the character table of A_5 .
9. Obtain the character table of the dihedral group D_{2m} by using induction from the cyclic group C_m . For each irreducible representation of C_m , determine whether the induced representation is irreducible, and determine its restriction to C_m . You will want to split into two cases according as m is odd or even.
10. Find all the characters of S_5 obtained by inducing irreducible representations of S_4 . Use these to reconstruct the character table of S_5 . Check that the answer that you get is compatible with Mackey's formula for the inner product of the induced representation with itself. Then repeat, replacing S_4 by the subgroup $\langle (12345), (2354) \rangle$ of S_5 of order 20.
11. Prove that if H is a subgroup of a group G , and K is a subgroup of H , and W is a representation of K then $\text{Ind}_K^G W \cong \text{Ind}_H^G \text{Ind}_K^H W$.
12. Let H be a subgroup of a group G . Show that for every irreducible representation (ρ, V) of G there is an irreducible representation (σ, W) of H such that ρ is an irreducible component of $\text{Ind}_H^G W$.

Deduce that if A is an abelian subgroup of G then every irreducible representation of G has dimension at most $|G/A|$.

13. We showed in class that there was an isomorphism $CG \rightarrow \bigoplus_{V \text{ irred}} \text{End } V$ as representations of $G \times G$, by computing characters. Define this map ‘naturally’ (as a map of vector spaces), and show it is an *algebra* isomorphism.

14. Suppose that G is a Frobenius group with Frobenius kernel K . Show that if V is a non-trivial irreducible representation of K then $\text{Ind}_K^G V$ is also irreducible. Hence, explain how to construct the character table of G given the character tables of K and G/K .

15. Let $G = GL_2(F_q)$, $q = p^n$, p a prime, $n \geq 1$. [You may assume $n = 1$ if you haven’t taken Galois theory; there is no difference in statements or proofs.] Let T be diagonal matrices in G , and B be upper triangular matrices.

Determine how many irreducible representations are in $\text{Ind}_B^G \theta$, when θ is a one dimensional representation of B , and when $\text{Ind}_B^G \theta$ and $\text{Ind}_B^G \theta'$ have constituents in common.

Determine the character of $\text{Ind}_B^G \theta$.

Describe the restriction of $\text{Ind}_B^G \theta$ to $SL_2(F_q)$, and for which θ the representation $\text{Ind}_B^G \theta$ comes from a representation of PGL_2 .

** If $\text{Ind}_B^G \theta$ is not irreducible, determine the dimension of its irreducible constituents. Determine their character.

Optional exercise. Galois theory needed.

16. (i) All of the theorems of class work for representations over $\overline{\mathbb{Q}}$, not just \mathbb{C} , with the same proofs. Deduce that if G is a finite group, there exists a finite Galois extension $F \supseteq \mathbb{Q}$ such that every representation of G can be realised as a vector space over F . [Hint: consider the matrices defining the irreducible representations.] In fact we can take $F \subseteq \mathbb{Q}(e^{2\pi i/|G|})$. [Can you prove this?]

In particular, conclude the character values are in F .

(ii) For each of D_8 and Q_8 , find a minimal field containing \mathbb{Q} that contains the matrix coefficients of the 2-dimensional representation.

(iii) Let V be a complex representation of G . Let $\sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$. Prove that $g \mapsto \sigma \chi_V(g)$ is the character of a representation of G . Give examples where this differs from V .

(iv) Show that the following are equivalent: a) the character values are all integers, b) $\chi_V(g) \in \mathbb{Q}$ for all irreducible representations V and all $g \in G$, and c) For all $g \in G$, m coprime to the order of g , and irreducible representation V , $\chi_V(g) = \chi_V(g^m)$.

If this is the case, deduce that for all $g \in G$, $\varphi(\text{ord}(g)) \mid |G|$, where φ is Euler’s totient function. In particular, $p-1 \mid |G|$ if $p \mid |G|$.

(Such groups are even rarer than this exercise suggests!).

Comments and corrections to groj@dpmms.cam.ac.uk.