

Representation Theory — Examples Sheet 4

On this sheet all representations are complex representations unless stated otherwise

1. Let $G = SU(2)$ and V_n be the vector space of complex homogeneous polynomials of degree n in the variables x and y .
 - (a) Describe how to view V_n as an irreducible representation of $SU(2)$. What is its character?
 - (b) Show that V_n is isomorphic to its dual V_n^* .
 - (c) Decompose the representations $V_4 \otimes V_3$, $V_3 \otimes V_3$, $S^2 V_3$ and $\Lambda^2 V_3$ into irreducibles.
 - (d) How do $V_1^{\otimes n}$, $S^n V_1$, $S^2 V_n$ and $\Lambda^2 V_n$ decompose into irreducibles for $n \geq 1$. What about $S^3 V_2$?
2. Let $SU(2)$ act on the space $M_3(\mathbb{C})$ of 3×3 complex matrices by

$$A: X \mapsto A_1 X A_1^{-1},$$

where A_1 is the 3×3 block diagonal matrix with block diagonal entries $A, 1$. Show that this defines a representation of $SU(2)$ and decompose it into irreducibles.

3. Let χ_n be the character of the irreducible representation of $SU(2)$ of dimension $n + 1$. Show that

$$\frac{1}{2\pi} \int_0^{2\pi} K(z) \overline{\chi_n} \chi_m \, d\theta = \delta_{nm},$$

where $z = e^{i\theta}$ and $K(z) = -\frac{1}{2}(z - z^{-1})^2$.

4. Let G be a compact group. Show that if G has an n -dimensional faithful representation over \mathbb{R} then there is a continuous faithful group homomorphism from G to the orthogonal group $O(n)$.

By considering the action of $SU(2)$ by conjugation on the vector space of 2×2 complex matrices A such that $A = -\overline{A}^T$ and $\text{tr } A = 0$, equipped with norm $\|A\|^2 = \det A$, construct a continuous group homomorphism $SU(2) \rightarrow SO(3)$. Deduce that $SU(2)/\{\pm I\} \cong SO(3)$ as topological groups.

5. Write down a Haar measure on $SU(2)$ and prove that it is translation invariant and normalised correctly.
6. The *Heisenberg group* is the group G of order p^3 of upper unitriangular matrices over the field with p elements. Show that G has p conjugacy classes of size 1 and $p^2 - 1$ conjugacy classes of size p . Find p^2 characters of G of degree 1. Find an abelian subgroup H of G of order p^2 . By induction of characters from H to G show that G has $p - 1$ irreducible characters of degree p . Write down the character table of G .
7. Let $G = PSL_2(\mathbb{F}_7) = SL_2(\mathbb{F}_7)/Z(SL_2(\mathbb{F}_7))$. Starting with the character table of $GL_2(\mathbb{F}_7)$, calculate the character table of G . Deduce that G is simple. By considering the structure constants of $Z(\mathbb{C}G)$, and only using information in the character table, show that G has elements of order 2 and 3 whose product has order 7. Deduce that G is generated by two of its elements.
- *8. Let \mathbb{F} be the field with 2^n elements for some $n \geq 1$. Construct the character table of $GL_2(\mathbb{F})$. Deduce that $PGL_2(\mathbb{F}) = GL_2(\mathbb{F})/Z(GL_2(\mathbb{F}))$ is simple for $n \geq 2$. What can you say about $PGL_2(\mathbb{F})$ when $n = 1$?

Comments and corrections to S.J.Wadsley@dpmms.cam.ac.uk.