PART II REPRESENTATION THEORY SHEET 2

Unless otherwise stated, all groups here are finite, and all vector spaces are finite-dimensional over a field F of characteristic zero, usually \mathbb{C} .

- 1 Let $\rho: G \to GL(V)$ be a representation of G of dimension d, and affording character χ . Show that $\ker \rho = \{g \in G \mid \chi(g) = d\}$. Show further that $|\chi(g)| \leq d$ for all $g \in G$, with equality if and only if $\rho(g) = \lambda I$, a scalar multiple of the identity, for some root of unity λ .
- Let χ be the character of a representation V of G and let g be an element of G. If g is an involution (i.e. $g^2 = 1 \neq g$), show that $\chi(g)$ is an integer and $\chi(g) \equiv \chi(1)$ mod 2. If G is simple (but not C_2), show that in fact $\chi(g) \equiv \chi(1)$ mod 4. (Hint: consider the determinant of g acting on V.) If g has order 3 and is conjugate to g^{-1} , show that $\chi(g) \equiv \chi(1)$ mod 3.
- 3 Construct the character table of the dihedral group D_8 and of the quaternion group Q_8 . You should notice something interesting.
- 4 Construct the character table of the dihedral group D_{10} .

Each irreducible representation of D_{10} may be regarded as a representation of the cyclic subgroup C_5 . Determine how each irreducible representation of D_{10} decomposes into irreducible representations of C_5 .

Repeat for $D_{12} \cong S_3 \times C_2$ and the cyclic subgroup C_6 of D_{12} .

5 Construct the character tables of A_4 , S_4 , S_5 , and A_5 .

The group S_n acts by conjugation on the set of elements of A_n . This induces an action on the set of conjugacy classes and on the set of irreducible characters of A_n . Describe the actions in the cases where n = 4 and n = 5.

6 A certain group of order 720 has 11 conjugacy classes. Two representations of this group are known and have corresponding characters α and β . The table below gives the sizes of the conjugacy classes in the group and the values which α and β take on them.

Prove that the group has an irreducible representation of degree 16 and write down the corresponding character on the conjugacy classes.

7 The table below is a part of the character table of a certain finite group, with some of the rows missing. The columns are labelled by the sizes of the conjugacy classes, and $\gamma = (-1 + i\sqrt{7})/2$, $\zeta = (-1 + i\sqrt{3})/2$. Complete the character table. Describe the group in terms of generators and relations.

- Let x be an element of order n in a finite group G. Say, without detailed proof, why
 - (a) if χ is a character of G, then $\chi(x)$ is a sum of nth roots of unity;
 - (b) $\tau(x)$ is real for every character τ of G if and only if x is conjugate to x^{-1} ;
 - (c) x and x^{-1} have the same number of conjugates in G.

Prove that the number of irreducible characters of G which take only real values (socalled real characters) is equal to the number of self-inverse conjugacy classes (so-called real classes).

9 A group of order 168 has 6 conjugacy classes. Three representations of this group are known and have corresponding characters α , β and γ . The table below gives the sizes of the conjugacy classes and the values α , β and γ take on them.

Construct the character table of the group.

You may assume, if needed, the fact that $\sqrt{7}$ is not in the field $\mathbb{Q}(\zeta)$, where ζ is a primitive 7th root of unity.

The character table thus obtained is in fact the character table of the group $G = PSL_2(7)$ of 2×2 matrices with determinant 1 over the field \mathbb{F}_7 (of seven elements) modulo the two scalar matrices. Deduce directly from the character table that G is simple¹.

- 10 The group M_9 is a certain subgroup of the symmetric group S_9 generated by the two elements (1,4,9,8)(2,5,3,6) and (1,6,5,2)(3,7,9,8). You are given the following facts about M_9 :
 - there are six conjugacy classes:
 - C_1 contains the identity.
- For $2 \leq i \leq 4$, $|C_i| = 18$ and C_i contains g_i , where $g_2 = (2,3,8,6)(4,7,5,9)$, $g_3 = (2,3,8,6)(4,7,5,9)$ (2,4,8,5)(3,9,6,7) and $g_4 = (2,7,8,9)(3,4,6,5)$.
 - $|C_5| = 9$, and C_5 contains $g_5 = (2,8)(3,6)(4,5)(7,9)$ $|C_6| = 8$, and C_6 contains $g_6 = (1,2,8)(3,9,4)(5,7,6)$.

 - every element of M_9 is conjugate to its inverse.

Calculate the character table of M_9 . [Hint: You may find it helpful to notice that $g_2^2 = g_3^2 = g_4^2 = g_5.$

Let a finite group G act on itself by conjugation. Find the character of the corresponding permutation representation.

¹It is known that there are precisely five non-abelian simple groups of order less than 1000. The smallest of these is $A_5 \cong \mathrm{PSL}_2(5)$, while G is the second smallest. The others are A_6 , $\mathrm{PSL}_2(8)$ and $\mathrm{PSL}_2(11)$. It is also known that for $p \ge 5$, $PSL_2(p)$ is simple.

- 12 Consider the character table Z of G as a matrix of complex numbers (as we did when deriving the column orthogonality relations from the row orthogonality relations).
- (a) Using the fact that the complex conjugate of an irreducible character is also an irreducible character, show that the determinant $\det Z$ is $\pm \det \bar{Z}$, where \bar{Z} is the complex conjugate of Z.
 - (b) Deduce that either $\det Z \in \mathbb{R}$ or $\det Z \in i\mathbb{R}$.
- (c) Use the column orthogonality relations to calculate the product $\bar{Z}^T Z$, where \bar{Z}^T is the transpose of the complex conjugate of Z.
 - (d) Calculate $|\det Z|$.

SM, Lent Term 2018

Comments on and corrections to this sheet may be emailed to sm@dpmms.cam.ac.uk