
PART II REPRESENTATION THEORY
SHEET 4

Unless otherwise stated, all vector spaces are finite-dimensional over C. In the first seven
questions we let G = SU(2). Questions 9 onwards deal with a variety of topics at Tripos
standard.

1 Let Vn be the vector space of complex homogeneous polynomials of degree n in the
variables x and y. Describe a representation ρn of G on Vn and show that it is irreducible.
What is its character? Show that Vn is isomorphic to its dual V ∗n .

2 Decompose the representation V4 ⊗ V3 into irreducible G-spaces (that is, find a direct
sum of irreducible representations which is isomorphic to V4 ⊗ V3; in this and the following
questions, you are not being asked to find such an isomorphism explicitly). Decompose V ⊗n1

into irreducibles.

3 Determine the character of SnV1 for n > 1.
Decompose S2Vn and Λ2Vn into irreducibles for n > 1.
Decompose S3V2 into irreducibles.

4 Let G act on the space M3(C) of 3× 3 complex matrices, by conjugation:

A : X 7→ A1XA
−1
1 ,

where A1 is the 3× 3 block diagonal matrix with block diagonal entries A, 1. Show that this
gives a representation of G and decompose it into irreducibles.

5 Let χn be the character of the irreducible representation ρn of G on Vn of dimension
n+ 1.

Show that
1

2π

∫ 2π

0

K(z)χnχmdθ = δnm,

where z = eiθ and K(z) = 1
2
(z − z−1)(z−1 − z).

[ Note that all you need to know about integrating on the circle is orthogonality of characters:
1
2π

∫ 2π

0
zndθ = δn,0. This is really a question about Laurent polynomials. ]

6 Check that the usual formula for integrating functions defined on S3 ⊆ R4 defines a
G-invariant inner product on the vector space of integrable functions on

G = SU(2) =

{(
a b
−b̄ ā

)
: aā+ bb̄ = 1

}
,

and normalize it so that the integral over the group is one.

7 Compute the character of the representation SnV2 of G for any n > 0. Calculate
dimC(SnV2)

G (by which we mean the subspace of SnV2 where G acts trivially).
Deduce that the ring of complex polynomials in three variables x, y, z which are invariant

under the action of SO(3) is a polynomial ring. Find a generator for this polynomial ring.
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8 (a) Let G be a compact group. Show that there is a continuous group homomorphism
ρ : G→O(n) if and only if G has an n-dimensional representation over R. Here O(n) denotes
the subgroup of GLn(R) preserving the standard (positive definite) symmetric bilinear form.
(b) Explicitly construct such a representation ρ : SU(2)→ SO(3) by showing that SU(2) acts
on the vector space of matrices of the form{

A =

(
a b
c −a

)
∈ M2(C) : A+ At = 0

}
by conjugation. Show that this subspace is isomorphic to R3, that (A,B) 7→ −tr(AB) is an
invariant positive definite symmetric bilinear form, and that ρ is surjective with kernel {±I}.

9 The Heisenberg group of order p3 is the (non-abelian) subgroup

G =


 1 a x

0 1 b
0 0 1

 : a, b, x ∈ Fp

 .

of matrices over the finite field Fp (p prime). Let H be the subgroup of G comprising matrices
with a = 0 and Z be the subgroup of G of matrices with a = b = 0.

(a) Show that Z = Z(G), the centre of G, and that G/Z = F2
p. Note that this implies

that the derived subgroup G′ is contained in Z. [You can check by explicit computation that
it equals Z, or you can deduce this from the list of irreducible representations found in (d)
below.]

(b) Find all 1-dimensional representations of G.
(c) Let ψ : Fp → C× be a non-trivial 1-dimensional representation of the cyclic group

Fp = Z/p, and define a 1-dimensional representation ρψ of H by

ρψ

 1 0 x
0 1 b
0 0 1

 = ψ(x).

Show that IndGHρψ is an irreducible representation of G.
(d) Prove that the collection of representations constructed in (b) and (c) gives a com-

plete list of all irreducible representations.
(e) Determine the character of the irreducible representation IndGHρψ.

10 Recall the character table of G = PSL2(7) from Sheet 2, q.8. Identify the columns
corresponding to the elements x and y where x is an element of order 7 (eg the unitriangular
matrix with 1 above the diagonal) and y is an element of order 3 (eg the diagonal matrix
with entries 4 and 2).

The group G acts as a permutation group of degree 8 on the set of Sylow 7-subgroups
(or the set of 1-dimensional subspaces of the vector space (F7)

2). Obtain the permutation
character of this action and decompose it into irreducible characters.

*(Harder) Show that the group G is generated by an element of order 2 and an element
of order 3 whose product has order 7.
[Hint: for the last part use the formula that the number of pairs of elements conjugate to x
and y respectively, whose product is conjugate to t, equals c

∑
χ(x)χ(y)χ(t−1)/χ(1), where

the sum runs over all the irreducible characters of G, and c = |G|2(|CG(x)||CG(y)||CG(t)|)−1.]
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11 Let Jλ,n be the n× n Jordan block with eigenvalue λ ∈ K (K is any field):

Jλ,n =


λ 1 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
...

. . . 1
0 · · · · · · 0 λ

 .

(a) Compute Jrλ,n for each r > 0.
(b) Let G be cyclic of order N , and let K be an algebraically closed field of characteristic

p > 0. Determine all the representations of G on vector spaces over K, up to equivalence.
Which are irreducible? Which are indecomposable?

Remark: Over C irreducibility and indecomposability coincide but this can fail for mod-
ular representations.

12 [For enthusiasts only. Part (a) requires knowledge of Galois Theory.]
(a) Let G be a cyclic group and let χ be a (possibly reducible) character of G. Let

S = {g ∈ G : G = 〈g〉} and assume that χ(s) 6= 0 for all s ∈ S. Show that∑
s∈S

|χ(s)|2 > |S|.

(b) Deduce a theorem of Burnside: namely, let χ be an irreducible character of G with
χ(1) > 1. Show that χ(g) = 0 for some g ∈ G. [Hint: partition G into equivalence classes by
calling two elements of G equivalent if they generate the same cyclic subgroup of G.]
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